

WP2 OVERVIEW

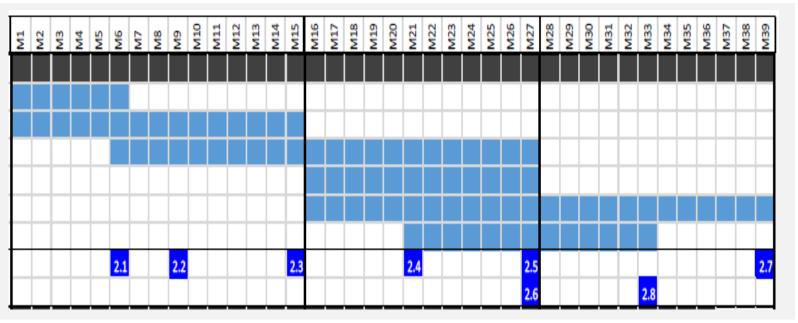
First General Assembly Reading, UK, 5-7 Feb 2018

Dominik Brunner & Empa, Switzerland 05/02/2018 Hugo Denier van der Gon TNO, The Netherlands

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 776186.

WP2 Library of simulations for emissions and atmospheric transport

Generate library of realistic CO₂ forward simulations - "nature runs"


- Simulations for present-day and future emission scenarios
- From global to regional to point source scale
- Provide simulation input for other WPs and other projects

Support assessment of requirements for a future CO₂ space mission

- Generate collection of synthetic satellite observations with realistic error characteristics, by combining model output with orbit simulations
- Investigate influence of aerosols on CO₂ retrieval in urban plume
- Investigate influence of small-scale and fluctuating nature of power plant plumes on capability to detect and quantify such plumes

Tasks and Schedule

T2.1 Specification of model simulations T2.2 Emission scenarios & biosph. fluxes T2.3 Nature runs T2.4 Synthetic satellite observations T2.5 Role of aerosols in city plumes T2.6 Simulation and quantification of power plant plumes

Deliverable

Deliverable

D2.1 Model systems and simulation config.	Empa	Report	D
D2.2 Global Run V1.1	ECMWF	Simulation	D
D2.3 Emissions and natural fluxes dataset	ΤΝΟ	Dataset	D
D2.4 European and Regional Runs	MPG	Simulation	D

Resp. Type

	Deliverable	Nesp.	туре
t	D2.5 Synthetic satellite datasets	DLR	Dataset
ation	D2.6 Global Run V2.1	ECMWF	Simulation
et	D2.7 Impact of urban aerosols on CO ₂	SRON	Report
ation	D2.8 LES Simulation	SPASCIA	Report

Rosn Type

Task 2.1 Specification of model simulations

Specifications

- Model descriptions
- Planned simulations (domains, periods, tracers)
- Emission data sets
- Other inputs and boundary conditions
- Required model outputs
- Appendices with further details (variable lists, data formats, etc.)

Draft for global simulations (example)

Global Simulation

Here is the description of the setup of the global simulations run by ECMWF. Some parameters will evolve between the tier 1 and tier 2 runs.

Description of the model and its domain

Please provide a description of the CAMS CO2/C-IFS model.

The domain of the simulation is global with a resolution of 9km*9km.

This global simulation should run through

- · the whole year 2015 for the Europe and Berlin case study;
- 2013 Feb 8 20 and 2013 Jul 16 29 for the Berlin case study;
- 2013 Jan 11 24 and 2013 Jun 16 29 for the Beijing case study;
 the month of August 2012, for the power plant case study.
- the month of August 2012, for the power plant case study.

Emission inventory

Anthropogenic emissions

Tier 1 runs

For the tier 1 run, the EDGAR fasttrack $\,v.\,4.2$ will be used.

Temporal profile

There is no day-to-day variability in these runs

Vertical profile

Please provide the vertical profile used in the tier 1 runs.

Tier 2 runs

The version of the EDGAR inventory needs to be determined.

It would be better for the Asian simulation to upgrade to the fasttrack v. 4.3.

Temporal profile

Depending on me outcome or me case situries, a temporar prome comu oe appried

Vertical profile

Depending on the outcome of the case studies, the vertical profile could evolve as well ?

Biogenic emissions

Please describe the biogenic emissions that have been/will be used

Required model outputs

Here are the required model outputs necessary for the nesting of the other simulation domains.

The outputs will be provided as 3-hourly data for the time periods listed here.

If hourly data are required for limited time periods, this should be mentioned.

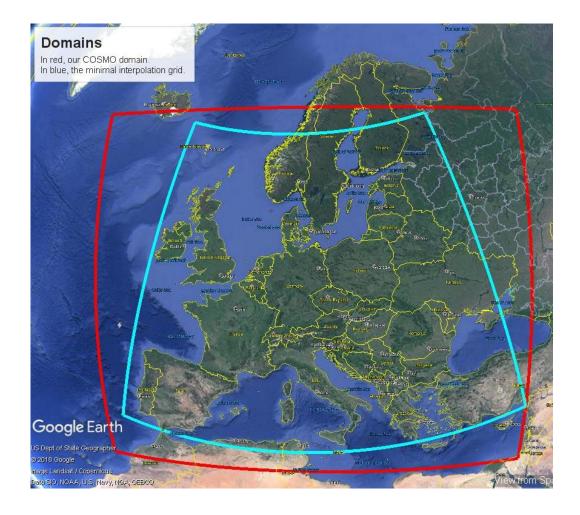
This list should be completed by each modelling group.

3D Meteorology

- Specific humidity (Q)
- · Cloud liquid water content (CLWC)
- Cloud ice water content (CIWC)
- Temperature (T)
- Wind components (U,V)

2D Meteorology

- Geopotential and land mask (Z/LSM)
- Snow depth (SD),
- Snow temperature (TSN)
 Skin temperature (SKT)
- Skin temperature (SRT)
 Skin Reservoir Content (SRC)
- Soil temperature (STLi)
- Soil wetness (SWVLi)
- Logarithm of surface pressure (LNSP)


3D Tracers

- CO2
- CO
- 2D Tracers

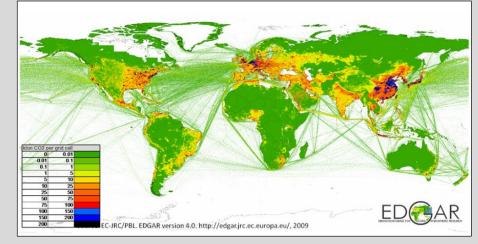
Task 2.1 Specification of model simulations

Example for European runs

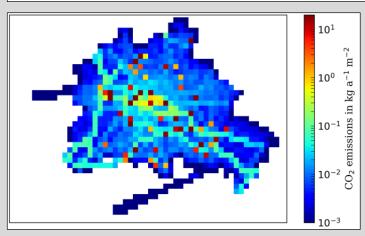
- Model descriptions (COSMO-GHG, WRF-GHG, LOTOS-EUROS)
- Present day and future simulations
 - Periods, model configurations
 - Grid definitions (domain, projection)
- Model inputs
 - IC/BC from ECMWF (meteo, CO₂, CO)
 - Emissions (TNO/CAMS) including time functions and vertical distribution (?)
- Required output
- Computational resources

Task 2.2 Emissions and biospheric fluxes

Global emissions (JRC)


- Based on EDGAR
- Sector-specific global emission grid maps of CO₂, CO (CH₄?) for 2015 & 2030
- Special attention given to spatial (0.1°x0.1°) and temporal (hourly) distribution

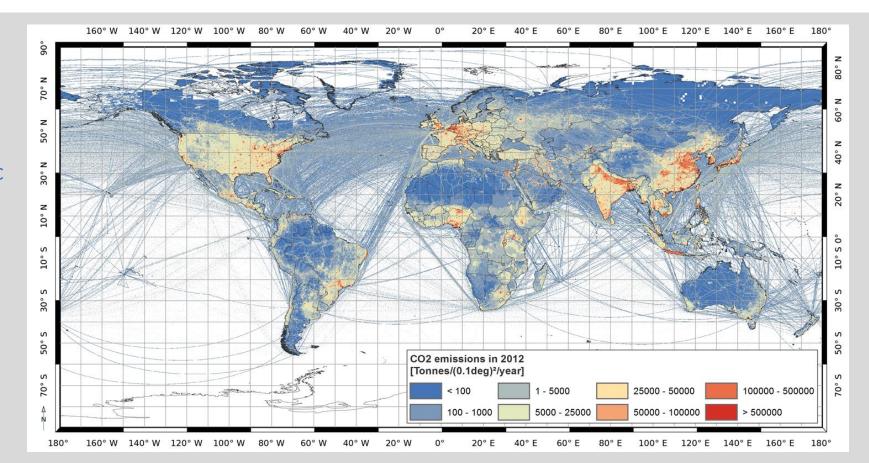
European / regional (TNO)


- Based on TNO/CAMS (formerly TNO/MACC)
- Downscaling with proxy data to ~1 km resolution for regional simulations
- Present-day (2015) and two future 2030 scenarios
- Meteo-driven emission timing

Berlin city emissions (Empa)

- Based on inventory of Senatsverwaltung of Berlin
- GIS shape files, rasterized to model grid(s)
- Vertical and temporal profiles depending on source category

CO₂ HUMAN EMISSIONS

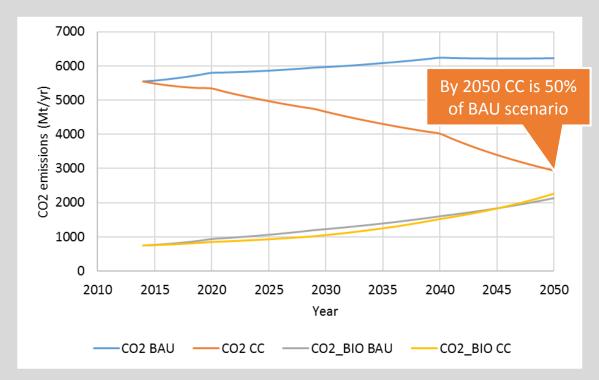

Global emissions

Present-day and future

- Based on EDGARv4.3.2 and EDGARv4.3.2FT approach up to year t-1
- and a scenario (e.g. CIRCE) for 2030
- Available by end of March 2018

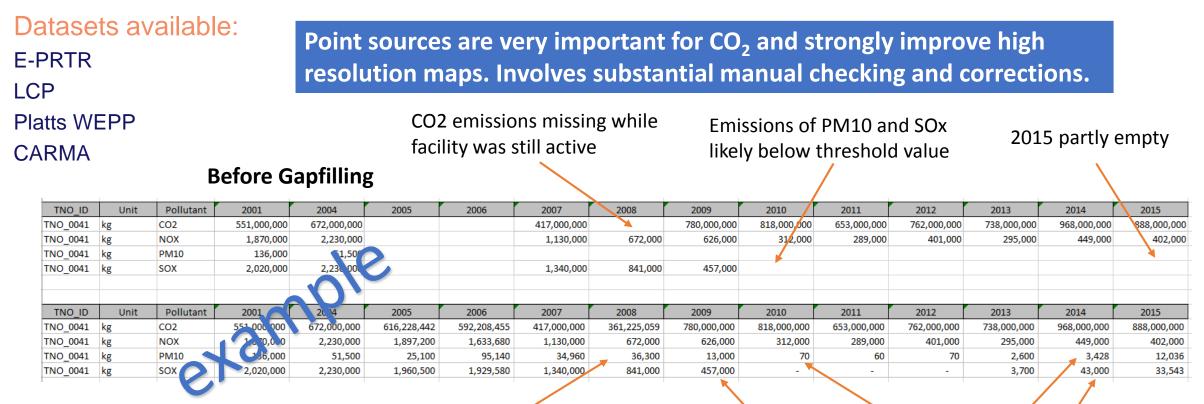
Procedure for creating the gridmaps:

- 1) take the sector-specific CO₂ (ff/bf) gridmaps of 2012
- 2a) calculate country- & sector-specific ratios 2015/2012 based on the dataset of the new CO₂ report.
- 2b) calculate country-specific ratios 2030/2012 based on the CIRCE dataset (BAU)
- 3) apply factors to the gridcells for the country


European emissions

Present-day (2015) emissions

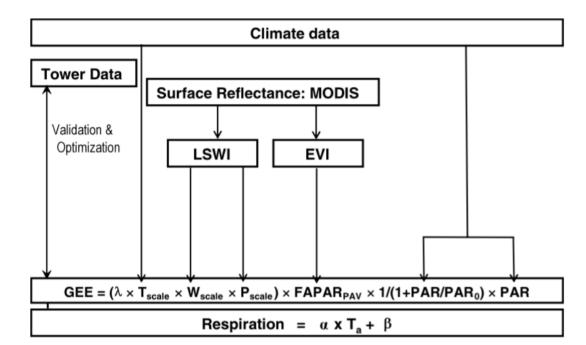
- Construction of 2015 European emission inventory for CO₂ and co-emitted species lined-up with CAMS81
- First 2015 dataset available by end of Mar 2018 (deadline CAMS81)
- Currently large effort on improving representation of point sources in the emission grids (next slide)


Future year (2030) scenarios

 A "climate change mitigation" (CC) scenario and a "business as usual" (BAU) scenario based on two global emission scenarios developed by the EDGAR team in the CIRCE project (Doering et al., 2010). Projected European CO₂ emissions based on the CIRCE Business-As-Usual scenario (BAU) and Climate Change scenario (CC) for the entire European domain

Improved representation of point sources

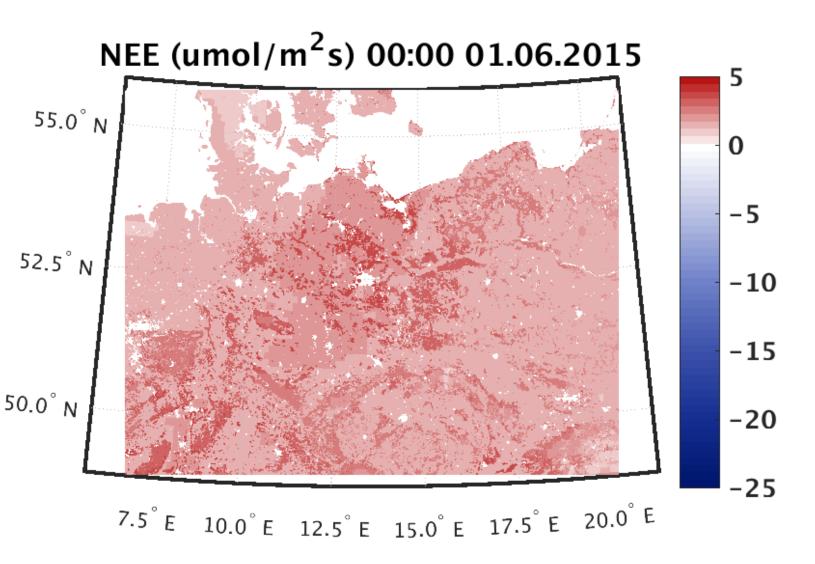
AIM Creating dataset of all plants/facilities in sector 1A1a public power and heat production including emissions, fuel type and coordinates :

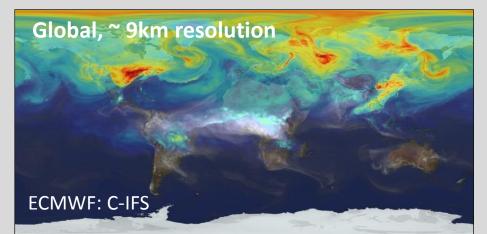

After gapfilling using LCP But this is only possible for CO2, NOx, PM10 (dust) and SOx (SO2) From LCP- PM & SOx look strange..

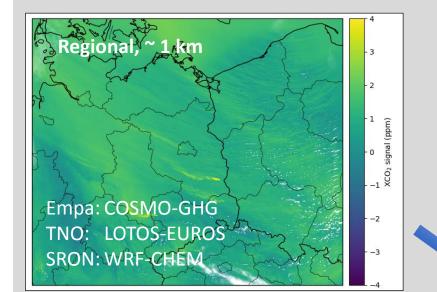
Same facility: Amercoeur #2 in 2009 closed # 3 in 2009 started

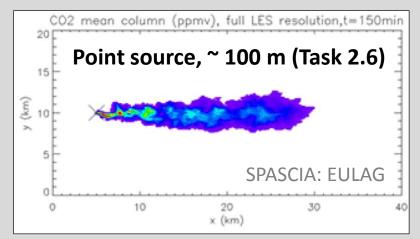
BIOSPHERE FLUXES

For use in WP2 and WP4

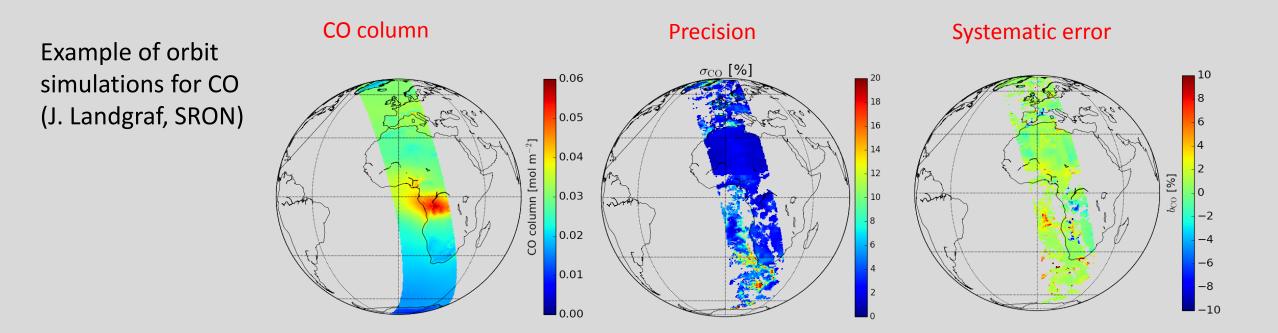

- Based on VPRM (Mahadevan et al., 2008), the Vegetation, Photosynthesis and Respiration Model
 - Uses MODIS 8-day reflectances at high resolution to produce indices EVI and LSWI
 - Requires meteorological input of temperature and shortwave radiation
 - Model parameters tuned to match flux tower measurements


VPRM FLUXES


- Routinely produced at ~10 km, hourly resolution for all of Europe
- 1-km hourly fluxes already prepared for region around Berlin (at right)
- To be extended to full European domain for 2015
- Should be available in March


Task 2.3 Nature runs

- Global to regional to point source scale
- Smaller scales nested into larger scales
- Complete year 2015, emission scenarios for 2015 and 2030
- 2 global runs by ECMWF (Tier 1 & Tier 2)
- Simulations with passive CO₂ and CO tracers
- Full chemistry simulations by TNO for Europe and Beijing



Task 2.4 Synthetic satellite observations

Generation of synthetic satellite observations (lead DLR)

- SRON orbit simulator
- Sampling of model fields (global to regional) along simulated orbits
- Simple error parameterization for random and systematic errors
- More advanced/realistic XCO₂ retrieval errors including spatiotemporal error correlations, based on retrieval simulations for **subset** of nature runs

Task 2.5 Impact of aerosols

Impact of aerosols on XCO₂ (SRON)

Result from ESA study on spectral

sizing led by SRON

- Investigate systematic XCO₂ errors in city plumes due to aerosols
- Regional WRF-Chem simulations of aerosols and CO₂ over Berlin and Beijing

90

-180

OSSEs to investigate impact of errors on inversion of city emissions

Aerosol induced error on XCO₂ using the CarbonSat low resolution measurements ensemble (provided by Butz et al, DLR)

-135

-90

-45

Concept B1, g=300, JUL, aerosol induced error minus global annual mean = 1.3 ppm

0

longitude

45

2

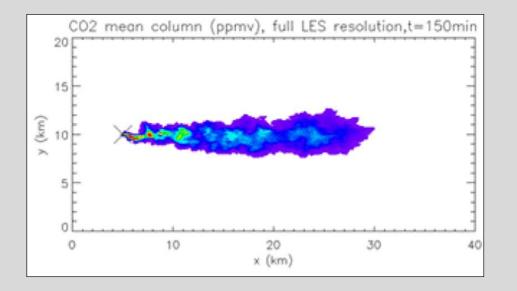
∆ ppm

-2

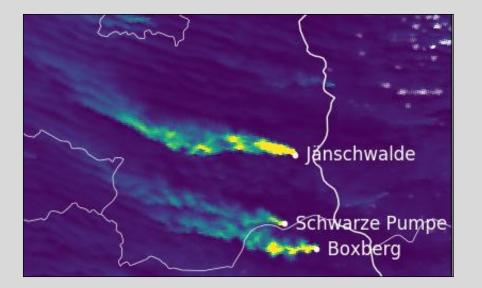
-4

135

180


90

Task 2.6 Power plant plumes (T2.6)


Simulation of XCO₂ in power plant plumes (SPASCIA)

- High resolution (100 m) LES simulations of power plant plume
- Representative weather situations with realistic meteo profiles
- Comparison with mesoscale simulations (COSMO-GHG)
- Investigate capability of recovering emissions from XCO₂ observations with imaging satellite with 2 km x 2 km pixels

EULAG LES simulation (100 m resolution)

COSMO-GHG simulation (1 km resolution)

WP2 outcomes and challenges

Outcomes

- Realistic nature runs at multiple scales
- Emission inventories and natural fluxes improved with respect to resolution and temporal variability
- Synthetic satellite observations with realistic error characteristics
- Impact of systematic errors due to aerosols on retrieval and on city plume emission estimation
- Requirements for observations of power plant plumes and improved characterization of representation error

Challenges

- Extensive computational resources required (CPU time and data storage)
- Timely provision of input data (IC/BC, emissions, biospheric fluxes) for simulations
- Dependency of simulations at smaller scales on those at larger scales
- Co-ordination of input and output data and formats (both within WP and across WPs)

Questions for WP2 breakout session

- Table of model simulations: Clear for global and European domain, less clear for Berlin and Beijing and point source simulations
- Task 2.5 (impact of aerosols): can we simulate periods in 2015 for Berlin?
- Emission data preparation, especially temporal and vertical emission profiles
- Initial and boundary conditions for limited area domains: required input (meteo, tracers, relaxation strategy
- Simulation of dry versus moist air mixing ratios: what is best approach?
- Minimal set of tracers in each domain
- Setup of full chemistry simulations by TNO for Europe, Berlin and Beijing
- Model output: meteo and tracer variables, formats, units, grids
- Aerosol fields for estimating systematic uncertainties in synthetic satellite data Global fields from ECWMF, European/Berlin/Beijing fields from TNO?
- Synergies with other WPs?

Dominik Brunner Empa, Switzerland 05/02/2018

