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1 Executive summary 
 

A strategy for a European integrated observation system to monitor fossil carbon dioxide 
(CO2), also referred to as a Fossil Fuel Data Assimilation System (FFDAS), has been 
proposed.  This FFDAS includes space-borne high resolution and spatially explicit 
observations of the CO2 total column abundance complemented by in situ air sampling 
networks, the development of state-of-the-art bottom-up emission inventories and the setup 
of several data assimilation systems.  Yet the atmospheric signals of fossil fuel emissions 
can be often be dwarfed by natural signals.  In consequence, it has been proposed to use 
additional trace species to separate the fossil CO2 component from the natural CO2 fluxes at 
regional scale.  WP4 aims to describe an optimal configuration for a measurement network 
with respect to trace species and station location and density to better complement the 
proposed FFDAS.  The tracers on which the work is focusing are radiocarbon CO2 (𝛿14CO2), 
carbon monoxide (CO), and atmospheric potential oxygen (APO). The target quantities will 
be the relative uncertainty reductions of fossil CO2 emissions in a set of predetermined 
regions and time periods.  Besides network design, WP4 already tests two additional 
objectives of the FFDAS: the use of state-of-the-art bottom-up emission inventories and the 
setup of several data assimilation systems.   

 

The different modelling groups participating in WP4 will address its objectives with different 
focuses ranging spatially from urban areas, to regional, to country to continental scales, 
temporally from hourly, to weekly, to monthly, to yearly scales and thematically from 
differentiating only between fossil fuel and non-fossil fuel emissions to differentiating 
emissions processes explicitly.  Consistent with the work in WP2 and the fluxes prepared 
therein, the year 2015 is chosen as the study period.  Partners EMPA and MPG will perform 
European-wide modelling using COSMO and WRF-STILT respectively at ~5 km x 5 km 
spatial resolution and hourly time steps.  Regional modelling will be carried out by NILU for 
the Oslo region at 2 km x 2 km and by CEA for northern France/Benelux/Western Germany 
(except Northern Netherlands) at 2 km x 2 km resolution.  

 

This deliverable aims to ensure that all the modelling groups are working with a harmonized 
set of initial conditions and uncertainty assumptions in order to obtain comparable estimates 
of uncertainty reduction.  This includes a common set of a priori flux estimates for each of 
the tracers involved, boundary conditions, comparable measurement and model error 
estimates, common a priori uncertainty estimates for prearranged regions, a common set of 
station arrangements and a similar simulation protocol.    
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2 Introduction 
2.1 Rationale 

 

The CO2 report to the European Commission (Ciais et al., 2015) provided a vision and 
strategy for a European integrated observation system to monitor fossil carbon dioxide (CO2) 
emissions within the Copernicus program. This observation system shall comprise three 
complementary components within a Fossil Fuel Data Assimilation System (FFDAS): 

I. Column-integrated atmospheric CO2 mole fraction measurements obtained from a 
dedicated space-borne sensor, with a high-resolution target (less than 3 km x 3 km) to 
distinguish individual emission regions and a wide swath (~500 km) for good spatial 
coverage (full coverage of Europe every three days).  In situ air sampling networks 
shall complement the space-borne sensor.   

II. The operational provision of bottom-up fossil CO2 emission maps with high spatial (1 
km x 1 km) and temporal resolution (hourly) and near-real-time production capability. 

III. An operational data-assimilation system with a very good representation of regional 
atmospheric transport processes in atmospheric models to integrate atmospheric 
measurements with bottom-up information into consistent and accurate estimates of 
fossil CO2 emissions.  

Nevertheless, the atmospheric signals of fossil CO2 emissions are diluted and often dwarfed 
by the large diurnal and annual variability in biogenic fluxes, related to photosynthesis and 
respiration.  Furthermore, relatively significant influences of ocean processes and biomass 
burning emissions may be superimposed on the atmospheric CO2 signals depending on the 
sampling location.  Additionally, fossil CO2 emissions are often point sources or highly 
concentrated over small (urban or industrial) areas. Therefore, Ciais et al., (2015) 
recommended the development of two complementary lines of approach to quantify fossil 
CO2 emissions: 

I. Focus on dense sampling of selected emission hotspots, e.g. megacities, major 
industrial areas, large power plants, e.g. urban networks.   

II. Separate the fossil CO2 component from the natural CO2 fluxes at regional scale by 
measuring additional trace species such as, e.g. radiocarbon in CO2 (𝛿14CO 2), carbon 
monoxide (CO) or atmospheric potential oxygen (APO).   

These two approaches shall provide support to the spatially explicit space-borne 
measurements to improve the separation of fossil fuel and natural sources.  Additionally on 
their own, these two approaches shall provide independent data to validate satellite-based 
emission estimates.   

 

2.2 Objectives 

 

WP4 aims to describe an optimal configuration for a measurement network with respect to 
trace species, station location and density as part of the proposed FFDAS to better 
complement spatially-explicit high resolution satellite measurements.  The target quantities 
will be the relative uncertainty reductions of fossil CO2 emissions in a set of predetermined 
regions and time periods. For this, detailed end-to-end simulations of the performances of an 
operational observation system of fossil CO2 emissions for different air sampling network 
configurations will be provided. Moreover, making use of these additional trace species 
requires to define a clean background reference for each of them, and to quantify their non-
fossil-fuel sources as well. The tracers on which the work is focusing are radiocarbon CO2 
(𝛿14CO2), carbon monoxide (CO), and atmospheric potential oxygen (APO). Furthermore, 
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besides the in situ air sampling network configuration, WP4 addresses several of the design 
recommendations for the proposed FFDAS:  

I. It will use a state-of-the-art bottom-up fossil CO2 emission maps with high spatial 
(ranging between 1-7 km) and temporal resolution (hourly).   

II. It will use several different high-resolution regional atmospheric transport models from 
different modelling groups at high spatial resolutions (1-50 km) to be able to represent 
small-to-mid scale transport patterns such as mountain-valley circulation or mountain 
wavers, the daily variability of the planetary boundary layer height, or sea breeze 
patterns or synoptic weather patterns.     

III. The different modelling groups participating in WP4 will address its objectives with 
different focuses ranging spatially from urban areas, to regional, to country to 
continental scales, temporally from hourly, to weekly, to monthly, to yearly scales and 
thematically from differentiating only between fossil fuel and non-fossil fuel emissions 
to differentiating emissions processes explicitly.   

 

2.3 Background 

2.3.1 Radiocarbon CO2 (𝛿14CO2) 

 

Radiocarbon (14C), the radioactive isotope of carbon, is constantly being produced in the 
lower stratosphere and upper troposphere by the interaction of cosmic rays with the 
atmospheric molecules, which generate high-energy neutrons.  These neutrons in turn 

collide mainly with nitrogen-14 ( 𝑁7
14 ) atoms and produce 14C.  14C quickly combines with 

atmospheric oxygen and produces 14CO, which is ultimately oxidized to 14CO2 by the 
reaction with the hydroxyl radical (OH).  14CO2 diffuses through the atmosphere, dissolves 
into the ocean or it is taken up by plants via photosynthesis, fixed and distributed through the 

biosphere.  In time, 14C decays reverting back into 𝑁7
14  with a half-life of ~5730 ± 40 years.  

Thus, fossil fuels, which have typically been buried for millions of years, are essentially void 
of 14C.  As a result, when CO2 derived from fossil fuel combustion is emitted to the 
atmosphere, there is a measurable decrease in the relative abundance of 14C with respect to 
12C.  In consequence, the difficulty of separating fossil fuel emissions from biogenic fluxes in 
atmospheric inversions could be partially overcome by including measurements of 14CO2.  
Nevertheless, the estimation of fossil fuel emissions is further complicated due to 
perturbations caused by emissions of 14C from nuclear reactors and nuclear fuel 
reprocessing plants and 14C releases due to heterotrophic respiration and ocean processes.   

 

 

Atmospheric 14CO2 measurements are usually reported in the ∆14C notation, the deviation 
from the absolute radiocarbon reference standard normalized for isotope fractionation as 
given by Stuiver & Polach, (1977) in ‰ units: 

 ∆ 𝐶14 = (
𝐴𝑆𝑁

14

𝐴𝑅
14 − 1) ×1000‰, Eq. (1) 

where  𝐴𝑅
14 = 0.95 x 0.238 Bq g-1 is the standard 14C activity based on 95% of the specific 

activity of the original NBS oxalic acid (OxA I) and 𝐴𝑆𝑁
14  is the measured fractionation-

normalized 14C activity of the sample.  𝐴𝑆𝑁
14  is calculated as: 

 𝐴𝑆𝑁
14 = 𝑅14 𝜆𝑁𝐴

𝑀
𝐶14

𝑓𝑁
13, Eq. (2) 

https://en.wikipedia.org/wiki/Stratosphere
https://en.wikipedia.org/wiki/Troposphere
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where R14 is the 14C-to-C atom ratio of the respective sample, 𝑀 𝐶14  is the molar mass of 

carbon (14 g mol-1), 𝜆 is the decay constant of 14C (3.8332 x 10-12 s-1), NA is the Avogadro 

number (6.022 x 1026 atoms mol-1), and 𝑓𝑁
13 is the 13C normalization based on the isotopic 

composition wood (set as 25‰), which itself is defined as: 

 𝑓𝑁
13 = 1 − 2 (

25 + 𝛿13𝐶

1000
). Eq. (3) 

The purpose of this 13C normalization is to correct for biochemical fractionation against the 
radiocarbon isotopologue 14CO2 abundance during photosynthesis, which is assumed to be 
twice as strong as for 13CO2 based on their respective departures in molecular mass from 
12CO2. 

Thus, the 14C-to-C atom ratio is: 

 𝑅14 =
 𝑀

𝐶14 𝐴𝑅
14

𝜆𝑁𝐴𝑓𝑁
13 (∆14𝐶 + 1). Eq. (4) 

The equation above can be simplified by defining the factor 𝑓: 

 𝑓 =
𝑀

𝐶14 𝐴𝑅
14

𝜆𝑁𝐴
. Eq. (5) 

For the OxA I standard, the factor 𝑓 is 1.176×10−12 atoms-1, which is then the ratio of the 

standard substance 𝑅𝑆𝑇𝐷
14 .   

Thus, the 14C-to-C atom ratio becomes: 

 𝑅14 =
𝑅𝑆𝑇𝐷

14

𝑓𝑁
13 (∆14𝐶 + 1). Eq. (6) 

In this study, all stocks and fluxes of 14C should be reported based on the 14C-to-C atom ratio 
derived from Eq. (6).   

 

However, when ∆14C is used to calculate fossil fuel CO2 content, the 13C Suess Effect 
(Suess, 1955; Tans et al., 1979) is neglected introducing a significant biases for heavily 
polluted areas (Wang, 2016).  Following Vogel et al. (2013, supplement), we use δ14C 
notation to build our inversion system, which is defined as: 

 𝛿 𝐶14 = (
𝑅14

𝑅𝑆𝑇𝐷
14 − 1) ×1000‰. Eq. (7) 

However, in the following sections, we sometimes inevitably mention the Δ14C notation and 
made some assumptions and approximations on the value of δ13C to convert Δ14C values 
into δ14C values (Table 2-1), when the latter are not available. These assumptions and 
approximations will only slightly influence the estimate of 14CO2 fluxes, as the variations in 
atmospheric δ13C are relatively small (Vogel et al., 2013, supplement), but they will not 
impact our uncertainty reduction calculations.  

 

Table 2-1 Recommended δ13CO2 values for source types 

Material Typical δ13C  

value [‰] 

C3 plants -27.5 

C4 plants -13.0 
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Atmospheric CO2 -8.0 

Ocean CO2 -22.5 

 

Moreover, despite its advantages, atmospheric 𝛿14CO2 measurements are so far expensive 
and difficult to make with sufficient precision because of its very low abundance (the 
accuracy at which the fossil fuel component of atmospheric CO2 can be determined from 14C 
measurements of CO2 in air samples is about 1 ppm with Accelerator Mass Spectrometry).  
To be useful for inversions, the network, the number of 14C observations need to be 
increased with a high data standard in terms of accuracy and availability (Levin & Karstens, 
2007).   The first simulations of a 14C observation system based on a network of air sampling 
stations across Europe indicated that with weekly sampling, national fossil CO2 emission 
budgets over a year could be independently verified with a typical accuracy of 10% for 
middle-sized countries (Wang, 2016). With daily sampling, a larger uncertainty reduction 
could be obtained.  Ciais et al., (2015) recommended deploying 𝛿14CO2 measurements at 
approximately 50 atmospheric sampling sites across the European continent with higher 
density over regions with high emissions.   

 

2.3.2 Carbon monoxide (CO) 

 

CO is another potentially interesting tracer in the context of separating fossil fuel emissions, 
as any hydrocarbon oxidation process with CO2 as an end product is to some extent 
associated with production of CO (Gamnitzer et al., 2006).  Compared to 14CO2 it is 
inexpensive and easy to measure with enough precision, and many more measurements are 
already available. Continuous (hourly frequency) CO2 and CO measurements supplemented 
by high precision 𝛿14CO2 measurements (weekly to bi-weekly frequency) can be used to 
estimate regional hourly fossil fraction of the CO2 mole fraction with uncertainties between 
20% and 88% (Gamnitzer et al., 2006; Pickers, 2016).  However, this method can only work 
with relatively correct information on CO/CO2 ratio of the sources, which may vary by orders 
of magnitude even within the same source process (Olivier et al., 2005).  Furthermore, this 
method also requires negligible influence of other sources.  Importantly biofuel burning, 
which cannot be distinguished by the CO constraint, but which is part of anthropogenic 
activity and, therefore, it may be spatially and temporally correlated with fossil fuel 
combustion, adds significant uncertainty to the application of CO as a quantitative fossil CO2 
proxy (Gamnitzer et al., 2006). Other non-fossil-fuel CO emissions, including soil and ocean 
fluxes, the production of CO from the oxidation of methane and non-methane volatile organic 
compounds (NMVOC) and the varying lifetime of CO in the atmosphere, which ranges 
between a few weeks up to a year depending on season, further add uncertainty to the 
method. 

 

2.3.3 Atmospheric potential oxygen (APO) 

 

O2 is not a trace gas, which means that its mole fraction is affected by small changes in 
other gases, such as CO2 (Keeling et al., 1998a). Therefore, measurements of atmospheric 
O2 are reported as changes in the O2/N2 molar ratio.  Since these differences in the O2/N2 
ratio are in the order of 10-6 to 10-4, they are reported as δ(O2/N2) in permeg units (ratio 
expressed as a fraction of 106), where 

 𝛿(𝑂2 𝑁2⁄ ) =
(𝑂2 𝑁2⁄ )𝑠𝑎𝑚𝑝𝑙𝑒−(𝑂2 𝑁2⁄ )𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

(𝑂2 𝑁2⁄ )𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
∙ 106. Eq. (8) 
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APO, introduced by Stephens et al., (1998), is a measure of the O2 concentration that 
cancels out the effect of the land biosphere on the 𝑂2 𝑁2⁄  ratio. APO is calculated as 

 𝐴𝑃𝑂 =  𝛿(𝑂2 𝑁2⁄ ) +  
𝛼𝐿

𝑦0
𝑂2

(𝑦
𝐶𝑂2 − 𝑦0

𝐶𝑂2) ∙ 106, Eq. (9) 

where 𝑦
𝐶𝑂2 is the CO2 mole fraction in ppm units, 𝛼𝐿 is the average O2:CO2 stoichiometric 

ratio for land photosynthesis or respiration (global average of -1.1), 𝑦0
𝑂2 is a fixed reference 

O2 mole fraction set to 209460 ppm, 𝑦0
𝐶𝑂2 is an arbitrary reference value of 350 ppm which 

has been introduced for convenience.  Thus, high precision, continuous measurements of 
atmospheric O2 and CO2 are a valuable tool for gaining insight into carbon cycle processes, 
and for separating land biosphere and ocean fluxes. 

 

Since CO2 and O2 fluxes from fossil fuel combustion are strongly anti‐ correlated, APO has 

been put forward as a potential tracer to detect fossil fuel signatures of CO2, based on 
different oxidation ratios associated with different flux processes (Pickers et al., 2016).  APO 
benefits from a smaller range of possible O2:CO2 emission molar ratios for fossil fuels (from -
1.2 to -1.95, more typically in the range of -1.3 to -1.4) compared to CO:CO2 (from <0.005 to 
>0.1, but typically in the range of 0.005 to 0.025), which results in a lower uncertainty 
estimation of the fossil CO2 (Pickers, 2016).  Hence, the APO method can likely be used 
independently of 𝛿14CO2 measurements (unlike the CO method), which are costly and are 
influenced by emissions from nuclear power plants, which are common in certain European 
regions.  As in the case of CO, the estimation of fossil fuel CO2 emissions with the APO 
constraint can be perturbed by biofuel combustion emissions.  However, the influence is less 
than in the case of CO because the APO method is conservative with respect to solid biofuel 
and biomass burning ( 𝛼 ≈  −1.1 ).  In addition, unlike CO, the APO constraint in not 
perturbed by biomass burning.   

 

2.1. Scope of this deliverable 

 

This deliverable provides the initial conditions and a common simulation framework for the 
different modelling groups in WP4 that will work on the attribution problem based on the use 
of in situ measurements. 

 

2.2.1. Objectives of this deliverable 

 

This deliverable aims to ensure that all the modelling groups are working with a harmonized 
set of initial assumptions. This includes assumptions related to fluxes (emissions of fossil 
and non-fossil sources for each tracer), concentrations (initial and boundary/background 
conditions), and uncertainties (prior flux uncertainties and correlations, measurement 
uncertainties, model-data mismatch, uncertainties in emission ratios, etc.). The assumed a 
priori uncertainties will not be identical, as different groups are solving for different quantities, 
but the statistical assumptions should be generally consistent.  

 

2.2.2. Analysis of uncertainty  

 

The comparison of the a posteriori covariance matrix with the a priori one corresponds to 
what is usually called the analysis of uncertainties: for each individual parameter one may 
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see how the initial uncertainty has been reduced (Tarantola, 2005).  The a posteriori 
covariance matrix, which contains the uncertainties and correlations of the estimated 
parameter values, is determined by two factors (1) the a priori emission uncertainty relative 
to the sum in quadrature of the measurement and model uncertainty, and (2) the sensitivity 
of the simulated mole fraction at a station toward the fluxes (Houweling et al., 1999) given by 
the location and time of the measurements.     

 

2.2.3. Work performed in this deliverable 

 

This deliverable provides a documentation of the planned modelling approaches that will be 
taken by the different groups. This includes a description of the different spatial and temporal 
scales on which the fluxes will be optimized as well as a description of how the additional 
tracers will be implemented. This deliverable also compiles and documents state of the art 
emission estimates for not only the fossil fuel components relevant for each tracer but also 
their non-fossil-fuel sources, in order to simulate the background variability as realistically as 
possible. 

 

2.2.4. Deviations and countermeasures 

 

A delay has arisen in the generation of the APO fluxes. A member of staff of UEA, who 
focused on this tracer, but who has since left the CHE project, originally coordinated this. 
None of the other modeling groups have used this tracer previously in inverse modeling 
studies.  The member of staff worked with TNO already last year to develop a product for 
CHE consistent with the CO2 emissions being used. This involved supplying oxidative ratios 
specific to fuel type (not only process), which means it had to be done a level higher in the 
processing chain than the process-separated fluxes that are already supplied by TNO, and 
as such required more work. 
 
Unfortunately, in the preparation of the proposal, APO fluxes were not included as a formal 
deliverable for TNO, and as such have not taken priority in the face of personnel limitations.  
APO fluxes were only available on August 6, 2019 and have since been over a number of 
iterations to adjust them better to the modeler’s needs as well as correcting clear errors.    
 
The implications of this delay are simply that the additional work in Task 4.2, namely the 
uncertainty reduction analysis of different sampling networks by the different modeling 
groups, will not begin in earnest until October. This is a delay of four months, which should 
still fit within the planned margins of the task. However, it reduces the safety buffer should 
additional complications arise. Nonetheless this still allows a full twelve months of work 
before the task is expected to be completed (month 36).   

3 Inversion configurations 
 
Consistent with the work in WP2 and the fluxes prepared therein, the year 2015 is chosen as 
the study period.  Partners EMPA and MPG will perform European-wide modelling using 
COSMO and WRF-STILT respectively at 5 km x 5 km spatial resolution and hourly time 
steps.  Regional modelling will be carried out by NILU for the Oslo region at 2 km x 2 km and 
by CEA for northern France/Benelux/Western Germany (except Northern Netherlands at 2 
km x 2 km resolution. A common list of relevant tracers was agreed upon: CO2, 14CO2, CO 

https://confluence.ecmwf.int/display/CHE/Inversion+configurations
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and APO. The modelling framework of each institution is described in turn in the following 
section.   

 

3.1 MPG 

 

We will provide detailed end-to-end analyses of the performances of hypothetical 
observation systems of fossil CO2 emissions with the Jena Carboscope inversion system 
(Rödenbeck, 2005) [http://www.bgc-jena.mpg.de/CarboScope/].  

 

3.1.1 Domain  

 

 

Figure 3.1 Simulation domain for the WRF/STILT simulation in WP4. 

 
The regional STILT simulations will be conducted on a 1/24° × 1/16° (latitude, longitude) 
horizontal grid covering the minimal domain of the region of interest in the CHE project 
(11˚W – 36˚E, 36˚N – 64˚N). In WP2, we provided WRF-GHG simulations at 5-km resolution 
for the whole European domain. The wind fields generated by WRF-GHG will be reprojected 
and used in STILT to calculate the footprints (sensitivities to upstream surface-atmosphere 
fluxes) starting at a receptor location (Nehrkorn et al., 2010).  The framework is thus 
analogous to a regional adjoint model in a Eulerian framework, providing an alternative to 
generating and implementing adjoint model code for a Eulerian transport model (Pillai et al., 
2012). 

 

3.1.2 Forward simulations 

 

Forward simulations containing both CO2, CO, APO and 14CO2 tracers shall be carried out in 
order to estimate the strength of the signals at different locations using tagged tracers.  The 
footprints calculated by STILT are then mapped to the high-resolution a priori fluxes and 
initial/lateral boundary conditions. This part of the framework – offline Lagrangian modelling 
– provides time series of CO2, 14CO2, O2 and CO mole fractions mole fractions at the 
receptor location.  𝛿14CO2 and APO can be calculated in a post-processing step.  In the 
resulting signals we will be able to distinguish the contribution from different processes to the 
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atmospheric signals sampled at different locations.  An example of what can be produced is 
found at https://stilt.icos-cp.eu/viewer/. 

 

3.1.3 Inversion setup 

 

Typically, within the Jena Carboscope, regional-scale high-resolution inversions are 
performed with the coupled TM3-STILT system (Trusilova et al., 2010). TM3-STILT is based 
on a combination of the fine-scale regional Stochastic Time-Inverted Lagrangian Transport 
model STILT (Gerbig et al., 2003; Lin, 2003) and the coarse-grid global three-dimensional 
atmospheric offline transport model TM3 (Heimann & Körner, 2003), which are coupled 
according to the two-step nesting scheme of Rödenbeck et al. (2009).  This nesting scheme 
allows the use of completely independent models for the representation of global and 
regional transport and hence facilitates an easy exchange of either component. The global 
inversion is used to calculate fluxes from the far field (outside of the regional domain of 
interest), and, subsequently, this information can be used to provide the boundary conditions 
for the regional inversion.  Since we will not use real mole fraction data in this study, which 
means that the fluxes outside the domain of interest do not need to be compatible with the 
fluxes inside the domain, we will not use the initial and boundary conditions provided by the 
TM3 model but from other sources described later in this document.   

 

The 4D-VAR variational inversion algorithm of the Jena Carboscope is described in detail in 

Rödenbeck (2005). Here we provide a brief summary.  The primary input for flux estimations 

is a vector the observed tracer mole fractions 𝒚𝒐𝒃𝒔  that contains the total set of 

measurements at all times and locations.  The modelled mole fractions 𝒚𝒎𝒐𝒅 results from the 
transport a discretized flux field f(x,y,t), which varies in time and space.  This is formally 
expressed as: 

 𝒚𝑚𝑜𝑑 = 𝑨𝐟 + 𝒚𝑖𝑛𝑖, Eq. (10) 

where 𝒚𝑖𝑛𝑖 is the initial conditions and 𝑨 is the transport matrix.  For regional inversions the 
transport matrix 𝑨 has been pre-computed by the STILT model for all times and locations 
where a measurement exists.  The inversion seeks to estimate the fluxes f that lead to 
minimum data-model mismatch (𝒚𝒐𝒃𝒔 − 𝒚𝒎𝒐𝒅) through the minimization of a cost function: 

 𝐽 =  
1

2
(𝒚𝒐𝒃𝒔 − 𝒚𝒎𝒐𝒅)𝑻𝑸𝒎(𝒚𝒐𝒃𝒔 − 𝒚𝒎𝒐𝒅), Eq. (11) 

where the diagonal matrix 𝑸𝒎  weights the mole fraction values given their assumed 
measurement error, location-dependent modelling error and a data-density weighting 
(Rödenbeck, 2005).  In regional scale inversions, the Jena Carboscope typically estimates 
three-hourly fluxes at gridcell scale resolution.  Therefore, the problem is ill-posed, because 
the number of unknowns is larger than the number of measurements.  The problem can be 
regularized by adding a priori information.   

 

To simplify the structuring of the a priori information such that it reflects process 
understanding, all the a priori information for each element of the flux vector f is supplied in 
the form of a statistical linear flux model (Rödenbeck, 2005): 

 𝐟 = 𝐟𝑓𝑖𝑥 + 𝐅𝐩. Eq. (12) 

The statistical linear model represents the a priori probability distribution of flux vector f. The 
flux vector f represents net flux per gridcell per time step.  It is composed of a fixed term 𝐟𝑓𝑖𝑥, 

which is the a priori expectation value ⟨fpri⟩, and an adjustable term, 𝐅𝐩, which determines 

https://stilt.icos-cp.eu/viewer/
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the deviations around ⟨fpri⟩ (Gaussian distributed). The adjustable term is composed of 

matrix F and vector p. Vector p is a set of adjustable parameters assumed to be 
independent, with an a priori expectation value 〈𝐩𝒑𝒓𝒊〉 = 0  and a priori unit variance 

〈𝐩𝒑𝒓𝒊 𝐩𝒑𝒓𝒊
𝐓 〉 = 𝜇

2
𝐈.  Each of the elements of vector p acts as a multiplier to each one of the 

columns of the matrix F. 

 

The matrix F comprises all the a priori information about flux uncertainties and correlations.  
Each column of matrix F represents an elementary spatiotemporal flux pattern or base 
function that is a building block of the total flux uncertainty (Rödenbeck et al., 2003).  The 
extension in space and time of these elementary flux patterns determines the coherent 
behaviour or correlations of the flux elements.  The matrix F is defined as 

 𝐅 = f𝑠ℎ(𝑥, 𝑦, 𝑡) ∙ g𝑚
𝑡𝑖𝑚𝑒(𝑡) ∙ g𝑚

𝑠𝑝𝑎𝑐𝑒(𝑥, 𝑦), Eq. (13) 

where g𝑚
𝑡𝑖𝑚𝑒 and g𝑚

𝑠𝑝𝑎𝑐𝑒
 are functions (range from zero to one) determining the temporal and 

spatial decomposition into statistically independent elements and f𝑠ℎ(𝑥, 𝑦, 𝑡)  is a discrete 
spatiotemporal shape function, which determines the local/instantaneous a priori standard 
deviation of the flux f (Rödenbeck, 2005).  Since the inversion algorithm will preferably 
project signals in the data into space and time locations with large a priori uncertainty, the 
shape function provides a spatiotemporal weighting of the flux adjustment and restricts the 
flux adjustments to prescribed source regions, e.g. land or ocean, or source periods, e.g. the 
growing season.  The a priori covariance matrix is 

 𝐐𝐹 = 𝐅𝐅𝐓. Eq. (14) 

 

Furthermore, the Jena Carboscope allows for the representation of the flux vector f as the 
sum of 𝑁𝑐𝑜𝑚𝑝  flux components, each of which is represented by its own independent 

statistical linear flux model: 

 𝐟 = ∑ 𝐟𝑓𝑖𝑥,𝑖 + 𝐅𝒊𝐩𝒊
𝑁𝑐𝑜𝑚𝑝

𝑖=1
. Eq. (15) 

Each flux component i may correspond to a physical source process, e.g. fossil fuels, gross 
primary productivity or ocean processes.  Additionally, flux components may correspond to a 
particular process split into different temporal scales, e.g. mean seasonal cycle, interannual 
or short-term variability, or spatial scales.  Since each component is independent, each 
component is assigned different a priori error covariance structure.  Ideally, this approach 
would allow for the partitioning of the deviations from the a priori flux estimate for each flux 
component considered.  This is the case for flux components that are geographically 
separate, e.g. land vs. ocean fluxes, or temporally separate, e.g. opposite seasonality of 
ecosystem respiration emissions and residential heating.   However, due to the nature of 
CO2 source and sink processes, there is considerable overlap among the processes 
contributing to the total flux in each gridcell even with good a priori knowledge of their 
spatiotemporal distribution.  When flux components overlap within a data-model mismatch 
gradient, the deviations from the a priori flux estimate calculated by the inversion are 
attributed to the flux components proportionally to their relative contribution to the overall 
uncertainty 𝐅𝑖 𝐅⁄  and to the ratio between the a priori flux uncertainty and the data 
uncertainty (Rödenbeck, 2005). 

 

Since the spatiotemporal distribution of the uncertainty of each component is not well known 
and the assumptions for the shapes 𝐟𝑠ℎ,𝑖, although made based on process understanding, 

are rather arbitrary, the partitioning between different sources and sinks may not be realistic. 
In this study, we make use of the information provided by 𝛿14CO2, CO mole fraction and 
APO measurements to provide an additional constraint to the partitioning of the sources.  
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This means that the Jena Carboscope simultaneously optimizes CO2, 14CO2, CO and APO 
fluxes such that they are consistent with the observations of the four trace species.  In order 
to represent 14CO2, CO and APO fluxes, which are adjusted proportionally to the CO2 fluxes, 
the Jena Carboscope allows for the definition of the so-called derived component.  The 
derived component j requires a driving component i.  In this study, the CO2 fluxes are always 
the driving component and the 14CO2, CO and APO fluxes are the derived components. The 
definition of the derived component varies from that of the general statistical flux model in 
such a way that, for driving component i and derived component j, the adjustable term of the 
derived component 𝐅𝒋𝐩𝒋 is replaced by the adjustable term of the driving component, 𝐅𝒊𝐩𝒊, 

scaled by a scalar proportionality factor 𝑑𝑟𝑣𝑠𝑐𝑎𝑙𝑒𝑖,𝑗 and by the shape function of the derived 

component 𝐟𝑠ℎ,𝑗: 

 𝐟𝑗 = 𝐟𝑓𝑖𝑥,𝑗 + 𝑑𝑟𝑣𝑠𝑐𝑎𝑙𝑒𝑖,𝑗 ∙ 𝐟𝑠ℎ,𝑗 ∙ 𝐅𝒊𝐩𝒊. Eq. (16) 

n this study, the factor 𝑑𝑟𝑣𝑠𝑐𝑎𝑙𝑒 was set to one, and the shape function of the derived 
component 𝐟𝑠ℎ,𝑗  represents the spatially and temporally explicit 14CO2/CO2, CO/CO2 and 

O2/CO2 ratios (molar).  This allows one to represent the spatial and temporal variability of the 
ratios. The relationship between the driving component and the derived component is fixed 
for every gridcell and time step.  Deviations from these fixed ratios can only be represented 
by additional flux components of the type represented by Eq. (15), which are then optimized 
independently.  In the case of error components 𝐟𝑝𝑟𝑖 = 0 and F represents the instantaneous 

uncertainty of the 14CO2/CO2, CO/CO2 and O2/CO2 ratios.  

 

With this information, the inversion seeks to minimize the cost function that combines the 
observational and the a priori constraint: 

 𝐽 =  
1

2
(𝐲𝒐𝒃𝒔 − 𝐲𝒎𝒐𝒅)𝐓𝐐𝒎(𝐲𝒐𝒃𝒔 − 𝐲𝒎𝒐𝒅) +

𝜇

2
𝐩𝐓𝐩 + 𝐶, Eq. (17) 

where C is a constant that summarizes all parameter independent terms and 𝜇 is a tunable 
parameter that scales the impact of the a priori constraint on the Bayesian inversion with 
respect to atmospheric data constraint.  The minimization of the cost function is done 
iteratively with respect to the parameters p using a Conjugate Gradient algorithm with re-
orthogonalization (Press 2007).   

 

3.1.4 Control vector 

 

Eight emission processes will be considered (Table 3-1): fossil fuel combustion, biofuel 
combustion, non-combustion fossil emissions (e.g. cement production from reaction CaCO3 +
ℎ𝑒𝑎𝑡 → CaO + CO2 ), gross primary productivity, ecosystem respiration, ocean processes, 
open biomass burning, nuclear power plants (only for 14CO2). Anthropogenic fossil fuel and 
biofuel combustion emissions will be further divided into the components contained within 
the TNO-GHGco inventory.  The three road transportation categories (F1: diesel, F2: 
gasoline and F3: LPG) will be aggregated into one.  For biofuel combustion emissions, 
categories with no emissions are not considered.  Additionally, road and off-road transport 
biofuel fuel emissions shall be considered as a derived component of the fossil fuel emission 
counterparts.  Land biosphere and ocean fluxes will be separated into two temporal 
frequency components each with a component optimizing the yearly average and mean 
seasonal cycle, and a component optimizing short-term variability.  In the case of CO, 
vegetation emissions and soil fluxes shall be coupled to the gross primary productivity and 
ecosystem respiration fluxes respectively, but with considerable degrees of freedom for their 
error components, which are independent.  Unfortunately, the WRF-STILT inverse modelling 
framework is currently only able to represent surface fluxes. Therefore, cosmogenic and 
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photochemical sources will only be represented as included in the boundary conditions, and 
the a priori emissions will not be distributed vertically using the profiles provided by EMPA 
(Brunner et al., 2019). Additionally, the regional simulations require boundary conditions 
from global models.  However, these boundary conditions cannot be optimized within the 
Jena Carboscope.  

 

3.1.5 A priori error covariance matrix 

 

 

Table 3-1 Processes and components considered in the control vector of the 
Jena Carboscope for WP4 as well as the source of their a priori estimate.  
Spatial and temporal correlation lengths represent exponential decay rate 
constants except for biogenic fluxes, where the spatial correlation is 
hyperbolic.  LT stands for long-term average. 

Process Components Spatial correlation 
length [km] 

Temporal correlation 
length [d] 

Fossil fuel combustion 

Public power 92 35 

Industry 7 35 

Stationary combustion 7 35 

Fugitives 12 31 

Solvents 15 20 

Road transp. 18 26 

Shipping 34 12 

Aviation 47 13 

Off-road transp. 51 11 

Agriculture 83 26 

Waste 72 26 

Biofuel combustion 

Public power 92 35 

Industry 7 35 

Stationary combustion 7 35 

Road transp. 18 26 

Off-road transp. 51 11 

Agriculture 83 26 

Waste 72 26 

Non-combustion fossil 
Cement 7 35 

Other 7 35 

Gross primary 
productivity 

LT + Seasonal 35 21 

Short term 35 21 

Respiration 
LT + Seasonal 35 21 

Short term 35 21 
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Ocean 

LT + Seasonal Zonal: 200 

Meridional: 150 

32.2 

Short term Zonal: 200 

Meridional: 150 

32.2 

Biomass burning*  35 21 

Nuclear power plants  92 35 

*: spatial and temporal correlations will be convolve with specific event delimiter from the Global Fire 
Atlas (Andela et al., 2019) 

 

The magnitude of the diagonal elements of the a priori error covariance matrix, which are 
equal to the shape function (f𝑠ℎ) in Eq. (13), will be set to be relatively consistent with the 
assumptions that other groups are making (see section 5.5).  Furthermore, spatial and 
temporal correlation functions were also defined in Eq. (13), which represent the off-diagonal 
terms of the a priori error covariance matrix.  Defining temporal and spatial correlations 
between the flux elements reduces the number of degrees of freedom and the 
underdetermination of the problem (Rödenbeck et al., 2003).  Additionally, because flux 
elements with long spatial or temporal correlations are constrained by a greater amount of 
data than the small scale, they filter out noise coming from measurement and model errors, 
and stabilize the calculation (Rödenbeck, 2005).  Moreover, temporal and spatial 
correlations may be used to estimate flux processes that have a distinctly different time-
varying behaviours or spatial distribution, e.g. seasonally varying in contrast to constant 
year-round emissions.  

 

In the Jena Carboscope, temporal correlations are represented by the spectral weights of a 
low-pass filter (e.g. Figure 3.2) with component-specific cut-off frequencies (see Table 3-1).  
For anthropogenic emissions, the cut-off frequencies for each component were determined 
with the temporal correlation analyses in section A.4.3.  For biogenic fluxes we assume a 
Gaussian temporal correlation structure with decay rate constants of 21.214 days (e-folding 
time of 30 days) based on Kountouris et al., (2015).  For ocean fluxes we assume a 
Gaussian temporal correlation structure with a decay rate constants of 32.2 d based on 
Jones et al., 2012).  For open biomass burning emissions, the temporal correlation will be 
the result of the convolution of the same Gaussian filter than for biogenic fluxes with a step 
function for each fire event contained in the Global Fire Atlas (Andela et al., 2019). 

 

 

Figure 3.2 Left: spectral weights of a triangular low-pass filter with a cut-off 
frequency of 6 a-1 in the frequency domain.  Right: relative spectral weights of 
the convolution of this filter with a unit pulse in the middle of the year.  
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Spatial correlations are the extent to which each of the elementary spatiotemporal flux 
patterns overlap each other in space and represent a spatial smoothing of previously 
uncorrelated a priori flux elements (Rödenbeck, 2005). For the anthropogenic emissions, the 
spatial correlation length was determined for each category based on the analyses in section 
A.4. In the case of biogenic fluxes, a hyperbolic spatial correlation 𝑟𝑥𝑦 similar to (Chevallier 

et al., 2012) was assumed: 

 𝑟𝑥𝑦 =
1

1+𝑑
35 km⁄

, Eq. (18) 

where d is the great circle distance between gridcell centres.  The characteristic decay rate 
of 35 km was obtained from Kountouris et al. (2015).  The hyperbolic spatial correlation from 
Chevallier et al. (2012) has a stronger impact from larger distances compared to the 
exponential shape leading to an aggregated uncertainty.  For ocean fluxes, a Gaussian 
spatial correlation structure with a characteristic decay rate of 200 and 150 km in the zonal 
and meridional directions respectively based on Jones et al., (2012) was assumed.  For 
open biomass burning emissions, the spatial correlation will be the result of the convolution 
of the same hyperpolic spatial correlation function with a two-dimensional step function for 
each fire event contained in the Global Fire Atlas (Andela et al., 2019). 

 

3.1.6 Observation error covariance matrix 

 

Going back to the cost function Eq. (17), the diagonal matrix 𝐐𝒎 weights the mole fraction 
values given their assumed measurement error, location-dependent modelling error and a 
data-density weighting (Rödenbeck, 2005).  Thus, the diagonal elements of the matrix 
represent the sum in quadrature of measurement and modelling error for each observation: 

 𝜎𝑡𝑜𝑡 = √𝜎𝑜𝑏𝑠
2 + 𝜎𝑚𝑜𝑑

2 . Eq. (19) 

The total error 𝜎𝑡𝑜𝑡  acts as a weighting among the data values. Assumptions of the 
measurement and modelling uncertainties for each tracer are discussed in sections 5.1 and 
5.2 respectively.   

 

The off-diagonal elements of the error covariance matrix represent the correlations between 
the measurement errors (e.g. due to common influences of standard gases, and equipment 
biases) and between the modelling errors (e.g. due to conceptual deficiencies in the 
transport parameterizations, or errors in the driving meteorology that affect all 
measurements) (Rödenbeck, 2005).  Nevertheless, due to the difficulties in characterizing 
error correlations, each observation is assumed independent so the off-diagonal elements 
are set to zero (Rödenbeck, 2005).  This also means that observation and model error 
correlations between species are cannot be assigned explicitly.  Nonetheless, since some 
measurements quantities are ratios, e.g. 𝛿14CO2 and APO, uncertainty propagation taking in 

consideration their correlations can be when transforming from 𝛿14CO2 and APO to 14CO2 
and O2 mole fractions, for example: 

 𝜎 𝐶14 = 𝑦 𝐶14 √(
𝜎𝐶𝑂2

𝑦𝐶𝑂2

)
2

+ (
𝜎𝑅14𝐶/12𝐶

𝑅14𝐶/12𝐶
)

2

−
COV(𝑦𝐶𝑂2 ,𝑅14𝐶/12𝐶)

𝑦𝐶𝑂2
∙𝑅14𝐶/12𝐶

, Eq. (20) 

where y and 𝜎 are the respective mole fraction and uncertainty values and  𝑅14𝐶/12𝐶 is the 

ratio 14CO2/12CO2 ratio. 
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Although the measurement error covariance is a diagonal matrix, we do consider for 
temporal correlations via a data density weighting. Looking back at the cost function, each 
element of the data-model mismatch vector is weighted by the inverse of its corresponding 
uncertainty such that the contribution of a particular measurement site to the cost function 
during a given period (here three hours) is  

 𝐽∗ =
1

2
∑

(𝑦𝑜𝑏𝑠,𝑖−𝑦𝑚𝑜𝑑,𝑖)
2

𝜎𝑡𝑜𝑡,𝑖
2

𝑁∗

𝑖=1 , Eq. (21) 

where 𝑁∗  is the number of measurements within this period (Rödenbeck, 2005).  This 
means the cost function and the cost function gradient increase proportionally to the number 
of measurements 𝑁∗ within a particular time period and location (Rödenbeck, 2005).  This 
would create unequal weighting between sites with continuous in-situ measurements (e.g. 
hourly) would have with respect to sites where air samples are taken every two weeks (CO2 
in comparison to 𝛿14CO2 observations).  However, the Jena Inversion System allows the 
possibility to merge both discrete flask and continuous measurements by scaling the 
uncertainty of each value in the mole fraction time series: 

 𝜎𝑡𝑜𝑡,𝑖 = 𝜎𝑡𝑜𝑡,𝑖 ∙ 𝑁∗. Eq. (22) 

This way the implied data-model mismatch uncertainty averages over the given period and 
does not depend on the number of measurements any more, as long as there is at least one 
data value within the period (Rödenbeck, 2005).  Although, through the data density 
weighting data streams with different data density have the same effect on the cost function, 
continuous data preserves its information on different areas of influence and correspondingly 
different signals among the modelled mole fractions that may help better determine the 
spatial structure of the fluxes (Rödenbeck, 2005).  Furthermore, data-density weighting can 
mediate the impact of data gaps.  

 

3.2 CEA/LSCE 

 

The high dimensional inversion setup described in this section is built for the co-assimilation 
of CO2, 14CO2, and APO data.  With this inversion setup, the potential of the combination of 
CO2 space-borne imagers and ground-based networks to monitor emissions will be explored 
by assimilating both types of data.  A proper CO and APO data assimilation requires 
controlling different emission sectors for each type of source (point, city and regional 
sources) separately in the inversion. However, we use such a high spatial control resolution 
for the co-assimilation of CO2 and 14CO2 that adding some sectorial resolution would make 
the control vector too large for the computations. Furthermore, the current expectations 
regarding the statistical constraint on the CO2 emission estimates from the CO data 
assimilation are rather low. Therefore, CO is not co-assimilated with CO2 and 14CO2 in the 
high dimensional inversion set-up described in the following. Some tests will be carried out 
about the co-assimilation of CO and CO2 data in a much lower dimension inversion system 
focused on Belgium (which is not described in the following). Although the expectations 
regarding the statistical constraint on the CO2 emission estimates from the APO data 
assimilation are higher will still plan to use the same lower dimension inversion system to 
test it. 
 

3.2.1 Domain 

 

The domain of the inversion configuration covers the Western part of Europe (longitude: -
6.82° to 19.18°; latitude: 42.0° to 56.39°) with a horizontal resolution that varies between 50 
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and 2 km. The 2 km × 2 km-resolution zoom covers Northern France, a large part of Benelux 
and Western Germany (longitude: -1.25° to 10.64°; latitude: 47.45° to 53.15°). 

  

3.2.2 Inversion setup 

 

The inversion system is based on an analytical inversion framework (Wu et al., 2016) with a 
dedicated configuration of the CHIMERE transport model (Menut et al., 2013). The analytical 
Bayesian inversion allows for the computation of the posterior uncertainty in the inverted flux 
budgets (its covariance matrix A) as a function of the observation operator H (connecting the 
flux budgets to the observation vector, and mainly built on the transport model), the 
covariance matrices of the prior uncertainties B and the model and observation errors R 
following (Tarantola, 2005): A = [B-1+HTR-1H]-1.  In practice, to co-assimilate CO2 and 14CO2 
data an iterative approach repeating analytical inversions will be used to deal with the non-
linearity of the observation operator (Wang et al. 2016). 

 

3.2.3 Control Vector 

 

The inversion window will cover a few days, up to 14. Within this time window, the system 
will solve for (see also section 4.2, for the detail of these terms): 

- Hourly budgets of the CO2 fluxes associated with: 

o Fossil fuel combustion 

o Wood burning 

o Crop residue burning 

o Ecosystem net primary production (NPP) 

o Ecosystem heterotrophic respiration (HR) 

- The daily δ14C signature of the heterotrophic respiration of ecosystems (δHR) 

- The δ14C signature of wood burning δbf,wood and of crop biofuels δbf,crop emissions (at a 
resolution that is not fixed yet) 

- Three-hourly budgets of the nuclear 14CO2 fluxes. 

For anthropogenic (fossil fuels and biofuels) CO2 fluxes (and potentially δbf), the control 
vector will distinguish cities (agglomerations) in Luxemburg, in all administrative regions of 
Belgium, in seven administrative regions of southern Netherlands, in three administrative 
regions in northern France and three administrative regions in western Germany (all 
comprised in the 2 km × 2 km-resolution zoom, see Figure 3.1Figure 3.3). In these 
administrative regions, the CO2/14CO2 emissions from major point sources (e.g. power plants 
for CO2 and nuclear power plants for 14CO2) are also controlled separately. The control 
vector also controls the rest of the emissions separately for each of these administrative 
regions.  

Outside this detailed area, and for France, Germany and Netherlands, the inversion controls 
the full budget of fossil fuel and biofuel CO2 emissions and of nuclear 14CO2 emissions over 
the administrative regions (Figure 3.4). Coarser areas of control for the anthropogenic 
emissions are used for the rest of the domain (Figure 3.5).  

Biogenic fluxes (NPP, HR and δHR) are only controlled at the resolution of administrative 

regions and larger area, i.e., the spatial resolution of the control vector is the same as for 
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anthropogenic emissions except that it does not distinguish agglomerations and major point 
sources.  

 

Figure 3.3 Administrative regions where agglomerations and point sources 
emissions are controlled separately in the inversion system at LSCE. The red 
line delimits the 2 km × 2 km-resolution zoom of the CHIMERE transport 
model. 

 

Figure 3.4 Administrative regions for which the full anthropogenic emission 
budgets are controlled in the inversion system at LSCE. The red line delimits 
the 2 km × 2 km-resolution zoom of the CHIMERE transport model. 
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Figure 3.5 Coarser areas for which the emission budgets are controlled in the 
inversion system at LSCE. The red line delimits the 2 km × 2 km-resolution 
zoom of the CHIMERE transport model. 

 

As mentioned in introduction of the presentation of this system, the proper co-assimilation of 
CO would likely require the separate control of anthropogenic emissions by main sectors of 
activities. However, we assume that it is much less critical for the co-assimilation of 14CO2 
and CO2 while the dimension of the control vector defined above, when controlling the total 
fossil fuel or biofuel emissions for a given agglomeration, region, or area, is already very 
high and demanding in terms of computations. Therefore, we avoid the sectorial resolution in 
the control vector. However, of note is that we will conduct some tests of CO and CO2 co-
assimilation for a low dimensional inversion case focused on Belgium with only ten areas of 
control (nine in Belgium, and one for the rest of the domain), where six emission sectors are 
controlled separately. 

 

3.2.4 Prior error covariance matrix 

 

For the biogenic CO2 fluxes (NPP, HR and δHR) and nuclear 14CO2 fluxes, the setup of 
uncertainties in the prior estimate will rely on section 5 to be coherent with other partners. 
For the CO2 fossil fuel and biofuel CO2 anthropogenic fluxes, the setup of the statistics of 
uncertainty in the prior knowledge from inventories will rely on an analysis of the Monte 
Carlo ensemble of gridded inventories of emissions provided by TNO in WP4 as in Appendix 
A adapted to our control vector.  

Meanwhile, we will still use a default setup with: 

- A 1-σ prior uncertainty of 50% for the regional, city or point source hourly budgets of 
natural or anthropogenic fluxes from ecosystem models and inventories 

- Temporal auto-correlation of this prior uncertainty with a 3-hour temporal scale  

- No correlation of the prior uncertainties between different regions/cities/point 
sources, sectors and between natural and anthropogenic emissions. 

For δbf,wood and δbf,crop, the uncertainties will be derived from their spatial and temporal 
variabilities in Europe in 2015, using the ORCHIDEE-MICT emulator that provided the δ of 
the biomass (see section 4.2.2), these values may be updated for the sake of consistency 
with the data proposed in section 5. 
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3.2.5 Observation error covariance matrix 

 

The errors associated with the CO2 satellite observations will rely on satellite error 
simulations made by IUP Bremen within ESA projects (PMIF). The model error will be 
estimated from model comparisons in WP2 and analyses of the CHIMERE model forced by 
different meteorological forcings at LSCE. For CO2 concentrations and CO2×δ14C, the in situ 
observation-and-model-error will follow the guidelines of section 5 and will be complemented 
(if needed) by the diagnostics of Wang et al. (2017). 

By default, we will first ignore temporal and spatial correlations in these errors. But we may 
finally include some of them to account for the systematic errors in the satellite data 
(simulated by IUP Bremen) in an appropriate way. 

 

3.3 EMPA 

3.3.1 Domain 

 

EMPA will conduct forward simulations of tagged tracers of CO2, CO, and 14CO2 over 
Europe on a roughly 5 km x 5 km resolution domain at hourly time steps using the COSMO-
GHG model. 

 

 

Figure 3.6 Domain of the COSMO-GHG simulations. 
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Table 3-2: Description of COSMO model grid. 

Parameter Zonal direction Meridional direction 

Rotated pole -170.00º 43.00º 

Start coordinates -17.00º -11.00º 

Grid cell 0.05º 0.05º 

Number of grid cells 760 610 

 

 
3.3.2 Control vector 

 

We aim to generate information that is complementary to that of MPG, which also simulates 
the entire European domain. We plan to include only few regions but with sector and fuel 
(fossil versus biofuel) split. 

 
The European domain will be split in a few (approx. 5) coarse geographical regions. 
CO2, CO and 14CO2 tagged tracers will be simulated for different source types (traffic, power 
plants, others, for CO2 and CO, GPP and Reco for CO2, anthropogenic, biogenic and nuclear 
for 14C), also distinguishing between fossil and non-fossil fuels when needed. 

 

Photochemical production of CO from NMVOCs will be considered through an additional 
three-dimensional source term as described in Section 4.4.5. Loss of CO by reaction with 
OH will be calculated using prescribed monthly mean OH fields averaged over an ensemble 
of chemistry-transport-models as described in Fiore et al., (2009) or the three-dimensional 
OH field of Spivakovski et al (2000).   

 

Two one-month simulation periods in summer and winter 2015 will be selected. 
Monthly mean emissions for those species, categories and regions for the simulated time 
period will be estimated. 

 

3.3.3 Prior error covariance matrix 

 

No correlation between the different regions will be considered, unless the ensemble of 
emission scenarios from TNO indicates that such correlations are needed.  The diagonal 
terms will be set consistently with the other modellers and the ensemble of emission 
scenarios from TNO (see section 5.5). For emissions from countries/regions that are not 
included in the TNO high-resolution European subdomain, the correlations will be estimated 
based on those available for the subdomain. For CO2 and CO, the cross-species correlation 
terms will be derived from the TNO scenarios, though additionally considering the split 
between sectors. Similar covariance matrices will be produced for the CO2+14CO2, CO2+CO 
and CO2+APO inversions, but we currently have too little information to provide any details 
at this point. 
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3.3.4 Observation error covariance matrix 

 

A simple diagonal matrix will be considered in a first step. Since the resolution of the 
transport model is the same as that of WRF-GHG, these terms should be similar in both 
inversion setups. A more detailed matrix may be used in a further experiment. 

 

3.4 NILU 

3.4.1 Domain 

 

The modelling domain consists of an inner domain (10.36°E - 10.94°E, 59.74°N - 60.02°N) 
around the Oslo centre including part of the Oslo fjord and an outer domain (8.87° E - 12.20° 
E, 58.95°N - 61.05° N) including surrounding urbanized areas is also included. Both the 
inner and outer domains have a resolution of ~1 km.   

 

3.4.2 Control vector 

 

Anthropogenic fluxes will be solved on a 3-hourly scale. Individual runs will be typically no 
longer than a week. Biogenic and oceanic fluxes will be considered for the background only 
and not resolved for. Synthetic runs for tracers representing CO, APO and 14C will be also 
performed. 

3.4.3 Prior error covariance matrix 

 

For the diagonal terms in the prior error covariance matrix, we assume a relative uncertainty 
ranging between 50 – 100 %. The prior flux error is assumed to be 50 % for land grid cells 
and 100 % for water grid cells. Spatial correlation will be ignored for the off diagonal terms. 
The diagonal terms error covariance matrix for fluxes of CO, 14CO2 and APO will be 
determined at a subsequent stage.   

 

3.4.4 Observation error covariance matrix 

 

The diagonal terms of the observation error covariance matrix for anthropogenic CO2 range 
between 0.1 and 5 ppm. The diagonal terms of the observation error covariance matrix for 
CO, 14CO2 and APO will be determined at a subsequent stage. Initially off-diagonal terms will 
be ignored. In supplementary observation system simulation experiments, temporal 
correlations of six hours and space correlation to represent transport model errors will be 
considered.  

 

3.4.5 Forward simulations 

 

FLEXPART driven by ECMWF meteorology at 0.1˚ x 0.1˚ resolution. Comparisons with 
output of FLEXPART-WRF planned. 
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4 Inversion inputs 
4.1 CO2 simulations 

4.1.1 Anthropogenic emissions 

 

For WP2, TNO has produced the new TNO-GHGco inventory at ~5 km resolution over 
Europe for the year 2015, in which area and point sources are kept separate 
(TNO_GHGco_v1_1, longitude -30° to 60°, latitude 30° to 72°; 1/10° x 1/20° resolution). The 
inventories follow the G-NFR categories and are provided fuel type into fossil fuel and 
biofuel, and non-combustion fossil emissions.  A high-resolution (~2 km) inventory over a 
smaller domain (TNO_GHGco_1x1km_v1_1, longitude -2° to 19°, latitude 47° to 56°; 1/60˚ x 
1/120˚ resolution) is now available as well.  This inventory includes ten different Monte Carlo 
realizations as an approximate estimate of uncertainty per point source or per gridbox. An 
analysis of the uncertainty is included in appendix A.  These data can be downloaded from 
their ftp site, with access information available from Hugo Denier van der Gon 
(hugo.deniervandergon@tno.nl) upon request.  Furthermore, EMPA has generated specific 
time functions for the different source sectors contained in the TNO-GHGco or EDGAR 
inventories in order to add temporal variability in emissions, e.g. residential heating 
increases with colder weather. Suggested vertical profiles depending on sector were also 
provided. The vertical profiles are only to be applied to point sources, while area emissions 
are released from the surface.  
 
 

4.1.2 Biogenic fluxes 

 

The biogenic fluxes for use in the both the WP2 forward simulations and the WP4 
inversions are derived from the VPRM model (Vegetation Photosynthesis and Respiration 
Model).  VPRM is a simple light-use-efficiency model driven by a combination of satellite 
reflectances from MODIS and meteorological input data. The MODIS reflectances are used 
to compute the indices EVI (enhanced vegetation index) and LSWI (land surface water 
index) at 8-day resolution. Due to noise in the signal and occasional missing pixels, these 
indices are loess filtered. The meteorological drivers are 2-m temperature and downward 
shortwave radiation at the surface. These were taken ECMWF's Tier 1 simulation produced 
within CHE at 0.1° spatial resolution and 3-hourly resolution. Because the VPRM fluxes are 
calculated at with an hourly time step while the meteorological input is only available in 3-
hourly resolution, linear interpolation was employed. Fluxes are calculated for eight different 
land cover types (evergreen forest, deciduous forest, mixed forest, shrubland, trees and 
grasses, cropland, grassland, and other).  Parameters for each land cover type determined 
through optimization with flux tower data from 47 sites for the year 2007, as described in 
Kountouris et al. (2018). The fractional land cover type per pixel is determined using the 
SYNMAP land cover product (Jung et al., 2006). VPRM CO2 fluxes are split in two terms: 
Gross Primary Production (FGPP,VPRM) and respiration (FR, VPRM), which sums autotrophic and 
heterotrophic respiration.  The model is more fully described in Mahadevan et al. (2008). 

 

The VPRM simulations will be run at a 5 km x 5 km resolution for the whole European 
domain and at a 1 km x 1 km resolution for the regional domains (Oslo, Northern France and 
Benelux).  In both cases, the simulations will be run at an hourly time step. Since the WRF-
GHG simulations of MPG have the largest of domain, defined with a standard longitude of 
12.5°E and true latitude of 51.604°N, with 962 longitudinal gridboxes and 776 latitudinal 
gridboxes at 5- km resolution.  The 5-km data can be found in on the CHE ftp site under 
data-exchange/WP2/Biogenic_emissions/EU5km/. One level higher there is a netcdf file 
providing the latitudes and longitudes of the corners of each 5-km gridbox 
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(corners_EU5km.nc). There is one file per day, with 24 time steps per file. The fluxes 
corresponding to “0” are to be used for the hour between midnight and 1:00 UTC.  For 
groups simulating higher resolution (~1 km) over a sub-domain, fluxes on the same grid as is 
used for the nested TNO domain have been produced as well. 

 

4.1.3 Oceanic fluxes 

 

Ocean fluxes CO2 will be extracted from the NEMO-PlankTOM5 (Buitenhuis et al., 2010) 
which simulated gridded ocean fluxes for O2, CO2 and heat for 1959 to 2018. The model 
simulations start from observations in 1920s and are therefore not at equilibrium. Therefore 
the variability in these simulations is more robust than the mean fluxes. These fluxes will be 
adjusted using inverse modelling based fluxes (Rödenbeck et al., 2015) to avoid biases. 

 

4.1.4 Biomass burning 

 

Daily GFASv1.2 emissions at 0.1º x 0.1º spatial resolution, available from CAMS, should be 
used to represent realistic atmospheric variability.  The GFASv1.2 emissions also include 
information on the plume injection height at daily time steps as provided by a plume rise 
model (mean altitude of maximum injection and altitude of plume top are provided).    

 

4.1.5 Photochemical source 

 

Photochemistry plays a non-negligible role in the CO budget.  Since these photochemistry 
results in the production of CO2, we shall include the three-dimensional CO2 source derived 
from the reaction CO + OH  CO2. For these we directly obtain the mass flux of CO2 being 
generated this reaction from the CO inversion scenario 3 in (Zheng et al., 2019).  This is a 
multispecies inversion assimilates measurements from MOPITT CO total column, surface 
methylchloroform (CH3CCl3) measurements, OMI formaldehyde total column and GOSAT 
CH4 total column measurements.  An estimate of the atmospheric signal generated by the 
photochemical production of CO2 is shown in Appendix B. 

 

4.1.6 Initial/Boundary conditions 

 

The initial and boundary conditions for CO2 should be taken from the Tier 1 simulation, 
described in D2.2.  Ideally the initial conditions for CO2 would include the CO2 produced from 
CO oxidation.  However, if this is not possible due to computational costs or model 
constraints, each group should decide to either to add the mole fraction fields in Appendix B 
to their initial conditions or to neglect this additional mole fraction.   

 

4.2 14CO2 simulations 

 

This section further on presents the required input data to simulate 14CO2 transport. We 
follow the formulation of the 14CO2 transport used in the inverse modelling study of Wang et 
al. (2016): 
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 𝐶𝑎𝛿𝑎 = 𝐻𝑡𝑟𝑎𝑛𝑠𝑝 [
𝛿𝐹𝐹𝐹𝐹𝐹 + 𝛿𝑏𝐹𝐹𝑏𝐹 + 𝛿𝑁𝑃𝑃𝐹𝑁𝑃𝑃 + 𝛿𝐻𝑅𝐹𝐻𝑅 +

𝛿𝑜𝑎𝐹𝑜𝑎 +
1

𝑅𝑠𝑡𝑑
𝐹𝑁𝑢𝑐𝑙

14 +
1

𝑅𝑠𝑡𝑑
𝐹𝑐𝑜𝑠𝑚

14 ] + 𝐻𝑏𝑐[𝐶𝑏𝑐𝛿𝑏𝑐], Eq. (23) 

where: 

• Ca is the CO2 concentration and δa the 14CO2/12CO2 ratio in the atmosphere, 

normalized by the 14C/12C ratio in the Modern Standard (Rstd= 1.176 x 10-12). 

Similarly, in the following, all δ are also normalized ratios.  

• Fx terms correspond to different types x of CO2 surface fluxes within the transport 

modelling domain: 
o Fossil fuel emissions (FF) 
o Bio-fuel emissions (bF) 
o Net primary production by vegetation (NPP) 
o Heterotrophic respiration from the soil (HR)  
o Emissions from the ocean to the atmosphere (oa)  

• F14
x terms correspond to 14CO2 fluxes from nuclear power plants (Nucl) and 

cosmogenic production (cosm). 

• δx coefficients correspond to the 14CO2 abundance in the fluxes listed above.  

• Cbcδbc are the boundary (top, lateral) and initial conditions of 14CO2 concentrations. 

In this section most of the δ in the fluxes and in the biomass (δbiomass) are calculated from 
products of an emulator of the ORCHIDEE-MICT model (Guimberteau et al., 2018).  This 
emulator is forced by historical changes in global 14C, rising CO2, variable climate and land 
use change since 1850 (Wang et al., in prep). It provides daily data, per plant functional 
types (PFT), at 0.5° resolution, over Europe (longitude -15° to 35°; latitude 35° to 70°).  

 

4.2.1 Anthropogenic emissions 

 

FFF and Fbf: fossil fuel and bio-fuel emissions are provided by the TNO inventories in 2015.  
The corresponding δ are applied to these fluxes: 

• δFF = -1000 ‰, should be applied on the whole year and domain 

• For biofuels (bF), we distinguish δ for wood burning fluxes (δbf,wood) from the one for 
crop-fuel burning fluxes (δbf,crop) because of their different growing periods and the 
resulting 14C abundance difference. In a first approximation, we use, as δbF, the 
temporal (over the year 2015) and spatial mean (over the ORCHIDEE-MICT Europe 
domain) of the δbiomass from the emulator of the ORCHIDEE-MICT model mentioned 
above. Such a computation of δbF relies on the strong hypothesis that the wood or 
cropfuel burnt in Europe comes from local and recently cut vegetation. Actually, 
imports, stocks and delays between cutting and burning wood or cropfuel are 
common. 

o δbf,wood = 84 ‰ for wood bio-fuel (GNRF categories A to C). We consider that 
bio-fuels burned in power plants, industry and residential sector, correspond 
to wood burning of European trees. Thus we use a spatial and temporal 
mean of δbiomass for PFT corresponding to non-tropical trees, over Europe in 
2015. 

o δbf,crop = 18 ‰ for crops bio-fuels (GNRF categories F and L). We make the 
hypothesis that these sectors (Road transport and Agriculture) burn local 
crops, harvest in 2015. Thus we use a spatial and temporal mean of δbiomass 
for PFT corresponding to crops, over Europe in 2015. 

o Other sectors are considered to have negligible bio-fuel emissions. 
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4.2.2 Biogenic fluxes 

 

FNPP and FHR: the VPRM simulations by MPI-Jena over Europe (latitude 31° to 68.7°; 
longitude  -35.5° to 60.5°, 5 km x 5 km, 1 h, in 2015) provide estimates of gross primary 

production (GPP) and respiration ( 𝐹𝐺𝑃𝑃
𝑉𝑃𝑅𝑀

 and 𝐹𝑅𝑒𝑠𝑝
𝑉𝑃𝑅𝑀 ). LSCE provides a daily partition 

coefficient (αHR, calculated from the above mentioned ORCHIDEE-MICT simulations 
Guimberteau et al, 2018) to reallocate GPP and Respiration from VPRM into NPP and HR 
fluxes. This daily coefficient has the spatial resolution of VPRM simulation but on a restricted 
area (longitude -15° to 35°; latitude 35° to 68.7°) corresponding to the available ORCHIDEE-
MICT simulation (longitude -15° to 35°; latitude 35° to 70°). It must be simply multiplied by 

𝐹𝑅𝑒𝑠𝑝
𝑉𝑃𝑅𝑀to get FHR and then we get FNPP following these equations: 

 𝐹𝐻𝑅 =  𝛼𝐻𝑅𝐹𝑅𝑒𝑠𝑝
𝑉𝑃𝑅𝑀, Eq. (24) 

 𝐹𝑁𝑃𝑃 =  𝐹𝐺𝑃𝑃
𝑉𝑃𝑅𝑀 + (1 − 𝛼𝐻𝑅)𝐹𝑅𝑒𝑠𝑝

𝑉𝑃𝑅𝑀. Eq. (25) 

δNPP monthly maps, for year 2015, are provided by LSCE. These maps have the spatial 
resolution of VPRM simulation but restricted to the area (longitude -15° to 35°; latitude 35° to 
68.7°) depending on the domains of the 3 land cover maps used to process this dataset 
(VPRM and ORCHIDEE land cover maps and MIRCA2000 crop map (Portmann et al., 
2010). To calculate δNPP, the following equation was used: 

 𝛿𝑁𝑃𝑃 = 𝛿𝑎,𝑠𝑢𝑟𝑓 − 𝜖, Eq. (26) 

where 

• δa,surf is the radiocarbon ratio in the surface atmospheric layer. Δ 14C monthly 

background measurements at Jungfraujoch and Schauinsland, in 2015 (Hammer et 
al., 2017) are used to characterize it. The mean of the 2 measurement sites is 
calculated and converted to δ following Stuiver et al. (1977). Here we neglect the 
impact of variations of this δa,surf at high resolution on the NPP fluxes themselves. 
Otherwise for a precise computation of the δNPP, and so 14CO2 NPP fluxes, we should 
dynamically calculate it with δa,surf depending on 14CO2 concentrations calculated by 
the transport model.  

• ε is the sum of kinetic and enzymatic 14CO2 fractionation with respect to 12CO2 
depending on the C3 or C4 photosynthesis pathway of the vegetation. ε corresponds 
to the double of the fractionation of 13CO2 (13ε) during photosynthesis:  ε= 36 ‰ for 
C3 vegetation (13ε = 18 ‰, Degens, 1969) and 8 ‰ for C4 vegetation (13ε = 4 ‰, 
Farquhar et al, 1989). The C3/C4 monthly repartition on the VPRM grid relies on 
combination of three landcover maps: VPRM and ORCHIDEE land cover maps and 
monthly MIRCA2000 crop map. 

δHR daily maps for year 2015 are provided by LSCE (e.g. Figure 4.1). These maps have the 
spatial resolution of VPRM simulation but on a restricted area (longitude -15° to 35°; latitude 
35° to 68.7°). Indeed, their generation relies on simulations of the above-mentioned 
ORCHIDEE-MICT emulator. For each grid cell, the daily components of the CO2 and 14CO2 
heterotrophic respiration were aggregated (litter respiration and 3 types of soil respiration) to 
calculate δHR and then project it on the VPRM grid.  
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Figure 4.1 δHR (‰) on the VPRM grid on January 1, 2015. Values available only 
on a restricted area corresponding to the ORCHIDEE-MICT simulation domain. 

 

4.2.3 Oceanic fluxes 

 

Several of the existing stations are located near the shore and might be sensitive to oceanic 
14CO2 fluxes.  For example, (Hsueh et al., 2007) found that while ocean exchange 
contributed only minimally to continental 14CO2 patterns across North America, this flux 
induced variations in excess of 1‰ near coastal zones. The ∆14CO2 source signature of 
ocean fluxes will be extracted from a NEMO-PlankTOM5 simulation (Khatiwala et al., 2018).   

 

4.2.4 Biomass burning 

 

Biomass burning emissions should be taken from GFASv1.2, as described in the section 
4.1.4 for CO2.  LSCE does not provide biomass burning 14CO2 emission but δbiomass from 
ORCHIDEE-MICT will be used to derive the signal of derive these emissions. 

 

4.2.5 Nuclear power plants 

 

LSCE provides a 14CO2 nuclear emission database as a listing of point source emissions. 
Nuclear 14CO2 emissions are simply calculated following (Graven & Gruber, 2011) from the 
annual activity of each reactor, in 2015, reported in (Zazzeri et al., 2018). For each reactor, 
activity data A is converted into 14C production in kg 14C reactor-1 a-1 normalized by Rstd: 

 𝐶𝑁𝑢𝑐𝑙
14 = A ∙ α ∙ 109, Eq. (27) 
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with α = Rs/0.226, where Rs = 1.176 × 10-12 is the 14C/C ratio in the Modern Standard and 
0.226 Bq/gC is the conversion factor from activity to carbon production.  Analysis of the data 
at LSCE and at EMPA could be used to define uncertainties in the temporal variability of 
these emissions.   

 

4.2.6 Cosmogenic  

 

We neglect cosmogenic production of 14C in the upper atmosphere because we assume that 
it is a small source within the European domains considered in CHE.  Cosmogenic fluxes 
would impact the atmosphere above typically 700 hPa, well above the planetary boundary 

layer (Turnbull et al., 2009), while we are interested in simulating 14CO2 concentrations near 
the ground. Even though we use some high altitude stations, we can assume that most of 
the influence from cosmogenic production at these surface stations comes from the model 
lateral boundaries and that the cosmogenic production within the modelling domain can be 
neglected.  Nevertheless, while we neglect cosmogenic production of 14C in the upper 
atmosphere within our European domains, cosmogenic production is included in the 
simulation from which the initial and boundary conditions were derived.  

  

4.2.7 Initial and boundary conditions 

 

Three-dimensional monthly fields of δ14C radiocarbon and CO2 concentrations for 2015 are 
provided by LSCE at 2.5° x 3.75° (latitude x longitude) resolution horizontally and with 19 
vertical layers (pressure levels, a and b pressure coefficients are also provided), over an 
area larger than the largest of the European modelling domains in WP4, so that each partner 
can extract and interpolate their own initial and boundary conditions. This product is derived 
from the global simulation (1998-2007) with LMDZ by Wang, (2016) with a trend added to 
approximate monthly fields of δ14C and CO2 for the year 2015.  

 

4.3 APO simulations 

 

The overall APO surface flux can be written as: 

 𝒇𝐴𝑃𝑂 = 𝒇𝑂2 + 𝛼𝒇𝐶𝑂2 −
𝑦0

𝑂2

𝑦0
𝑁2

𝒇𝑁2, Eq. (28) 

where 

 𝒇𝑂2 = 𝒇𝑂2,𝐹𝐹 + 𝒇𝑂2,𝐵𝐹 + 𝒇𝑂2,𝐵𝐵 + 𝒇𝑂2,𝑂𝐶 Eq. (29) 

 𝒇𝐶𝑂2 = 𝛼𝐹𝐹𝒇𝐶𝑂2,𝐹𝐹 + 𝛼𝐵𝐹𝒇𝐶𝑂2,𝐵𝐹 + 𝛼𝐵𝐵𝒇𝐶𝑂2,𝐵𝐵 + 𝛼𝑜𝑐𝒇𝐶𝑂2,𝑂𝐶 Eq. (30) 

 𝒇𝑁2 = 𝒇𝑁2,𝑂𝐶 + 𝒇𝑁2,𝑠𝑜𝑖𝑙 + 𝒇𝑁2,𝑝ℎ𝑜𝑡𝑜𝑐ℎ𝑒𝑚 . Eq. (31) 

FF, BF, BB, and OC refer to fossil fuel, biofuel, biomass burning and ocean processes 

respectively. 𝛼𝐿 is the stochiometric O2/CO2 ratio for each of the processes. 𝑦0
𝑁2 and 𝑦0

𝑂2 are 

the reference N2 and O2 mole fraction (780800 and 209460 ppm respectively).  Notice that 
any contribution from the land biosphere is cancelling out to the extent that the 
stoichiometric ratio, 𝛼𝐿  is realistic. Nitrogen fluxes from nitrification, denitrification and 

photochemistry are neglected (𝑓𝑁2,𝑠𝑜𝑖𝑙 , 𝑓𝑁2,𝑝ℎ𝑜𝑡𝑜𝑐ℎ𝑒𝑚 ).  To convert APO into an O2 mole 
fraction for modelling: 
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 𝑦𝑂2 = 𝑦0
𝑂2 [

𝑝𝑝𝑚

𝑝𝑒𝑟 𝑚𝑒𝑔
] 𝐴𝑃𝑂. Eq. (32) 

 

4.3.1 Anthropogenic emissions 

 

Initial work involved deriving the O2 consumption fluxes directly from the TNO CO2 emission 
inventory for complete consistency.  The 𝛼𝐹𝐹 and 𝛼𝐵𝐹 will be assigned either using values 
from the literature (Steinbach et al., 2011) or from H:C ratios (based on the fact that for most 

fuels, H:C ratios and O2/CO2 ratios are strongly correlated).  For the O2/CO2 ratios, TNO 
used the fuel type (solid, liquid, gaseous, biomass and other - mainly waste) as reported in 

the UNFCCC by each country.  For fossil fuels, the O2:CO2 ratio (𝛼𝐹𝐹) ranges from ~-1.20 to 
~-1.95. For biofuel combustion, we will use an oxidative ratio of 1.07 (Steinbach, 2010).  
Uncertainties in these ratios will also be provided where possible using the range of values 
in the literature, theoretical calculations, and existing observation data.  For the calculation of 

the O2:CO2 ratios, the following assumptions are made:  

a) Sulphur and nitrogen content has negligible impact for most fuels, 

b) Fuels are burnt completely, and any CO produced is short-lived in the atmosphere and 

converted to CO2 relatively quickly (Keeling et al. 1988),  

c) Energy production is nearly proportional to O2 consumption across a wide range of fuels, 
based on relatively similar net higher heating (NHHV) values (in kcal/mole) across different 
types of fuels (Keeling 1988). 

 

Furthermore, APO offers the possibility to separate between fossil fuel combustion 
emissions and fossil non-combustion emission, which do not consume oxygen.  Because the 
database underlying the TNO inventory contains industry sector emissions divided between 
combustion and non-combustion sources, we are able to represent this apart for emission 
from the cement production reaction, from other non-combustion processes including CO2 
emissions from blast furnaces in iron and steel, and from lime production.   

 

4.3.2 Biogenic fluxes 

 

Globally, the O2:CO2 ratio (𝛼𝐿) of terrestrial biospheric exchange is -1.1 on a yearly scale.  At 

the regional scale (i.e. Europe) on sub-annual timeframes, αL may differ slightly from -1.1 (by 

up to ± 0.1).  We will assume a O2:CO2 ratio for according to (Clay & Worrall, 2015; Worrall, 

Clay, & Macdonald, 2015) where an average αL value is given per biome (for NPP) and soil 
type (for respiration).  No diurnal, seasonal or latitudinal variability in αL is assumed. 

 

Table 4-1 Range and median values of the oxidative ratio (O2/CO2) of 
vegetation according to biome based on  Clay & Worrall (2015) 

Biome O2/CO2 

Median 

O2/CO2 

Range 

Evergreen forest 1.07 1.03 – 1.08 

Deciduous forest 1.08 1.03 – 1.13 
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Croplands 1.05 0.98 – 1.12 

Woody savannah 1.06 1.03 – 1.11 

Grasslands 1.03 0.79 – 1.30 

Mixed forest 1.07 1.02 – 1.12 

Cropland/natural mosaic 1.05 1.02 – 1.07 

Closed shrublands  1.10 1.03 – 1.12 

Open shrublands 1.02  

Savannah 1.09 1.05 – 1.12 

Permanent wetlands 0.99 0.93 – 1.03 

Urban 1.02  

Snow/ice 0.00  

Barren 0.00  

Unclassified 1.02  

 

Table 4-2 Range and median values of the oxidative ratio (O2/CO2) for each soil 
type of the USDA global soil based on  Clay & Worrall (2015). 

Biome O2/CO2 

Median 

O2/CO2 

Range 

Alfisols 1.11 0.77 – 1.37 

Andisols 1.03  

Aridisols 1.02  

Entisols 1.07 0.99 – 1.11 

Histosols/Gelisols 1.08 0.84 – 1.24 

Inceptisols 1.14 1.06 – 1.24 

Mollisols 1.14  

Oxisols 1.00 0.80 – 1.06 

Spodosols 1.08  

Ultisols 1.00 0.85 – 1.04 

Vertisols 1.01 0.80 – 1.08 

 

 

 

 

 

4.3.3 Oceanic fluxes 
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Gridded ocean CO2, O2 and heat fluxes will be extracted from the NEMO-PlankTOM5 model 
(Buitenhuis et al., 2010). The model simulations start from observations in 1920s and are 
therefore not at equilibrium and CO2 fluxes have been manually tuned to match observations 
during the 1990. Therefore, there could be inconsistencies between the CO2 and O2 fluxes. 
As such, both APO fluxes shall be adjusted using inverse modelling based fluxes 
(Rödenbeck et al., 2015) to avoid biases. MPG has provided APO fluxes based on Jena 
Carboscope inversions using 9 background sites measuring O2, based on the method 
described in Rödenbeck et al. (2008). These fluxes are from the apo99_v1.6 simulation 
documented (available under http://www.bgc-jena.mpg.de/CarboScope/).  The fluxes have 
been uploaded to the CHE ftp site under data-exchange/WP4/APO/apo99_v1.6.nc. 

 

Sea-air nitrogen fluxes arise mostly from temperature-induced solubility changes in the 
ocean.  Therefore, ocean N2 fluxes can be estimated from NEMO-PlankTOM5 heat fluxes 
and the Keeling et al. (1993) formula.  Voluntarily some of the groups involved may want to 
include ocean N2 fluxes in order to test their impact on model APO signals.  

 

4.3.4 Biomass burning 

 

Based on Steinbach (2010), a ratio of 1.11 corresponds to the typical biomass burning 
process where CO emissions account for ~10% of CO2 emissions (Crutzen & Andreae, 
1990).  However, depending on the type of fire, the combustion process might be less 
complete and the CO/CO2

 

emission ratio might go up to ~30%.  For these cases, oxidative 
ratios up to 1.41 have been observed (Lueker et al., 2001).  We will assume a linear 
relationship between the oxidative ratio and the CO/CO2 ratio obtained from GFASv1.2:  

 
𝑂2

𝐶𝑂2
= 1.55 

𝐶𝑂

𝐶𝑂2
+ 0.945. Eq. (33) 

 

4.3.5 Photochemistry 

 

Stephens et al. (1998) introduced a correction term for the influence of photochemical CH4 
and CO oxidation because the reaction with OH represents a net loss of atmospheric O2.  
This is represented as 

 𝛿(𝑂2 𝑁2⁄ )𝑐𝑜𝑟𝑟 = 𝛿(𝑂2 𝑁2⁄ ) −
2

𝑦0
𝑂2

𝑦𝐶𝐻4 −
0.5

𝑦0
𝑂2

𝑦𝐶𝑂, Eq. (34) 

where 𝑦𝐶𝐻4 and 𝑦𝐶𝑂 are the CH4 and CO mole fractions in ppm.  Since we are simulating CO 
in this study, we can account for this correction while neglecting the effect of CH4.   

 

4.3.6 Initial/Boundary conditions 

 

For the concentration fields, initial and lateral boundary conditions can be taken from 
optimized concentration fields from the Jena Carboscope inversions using 9 background 
sites measuring O2, based on the method described in Rödenbeck et al., (2008). These 
concentrations are based on a forward run of the optimized fluxes from the apo99_v1.6 
simulation, as documented (available under http://www.bgc-jena.mpg.de/CarboScope/).  The 
concentration fields have been uploaded to the CHE ftp site under data-
exchange/WP4/APO/apo99_v1.6_mix_2015.nc. 

http://www.bgc-jena.mpg.de/CarboScope/
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4.4 CO simulations 

4.4.1 Anthropogenic emissions 

 

As for CO2, CO emissions are available from the TNO-GHGco inventory at 5-km resolution 
over Europe and at 1-km resolution for a subset of the domain with an ensemble of 10 
realizations.  The inventory follows the G-NFR categories and the transport category is 
separated into fossil fuel and biofuel.  A detailed analysis of the CO/CO2 ratio is found in 
appendix A. 

 

4.4.2 Vegetation 

 

A small amount (up to 200 Tg CO a-1) is directly generated from plant leaves.  For biogenic 
CO emissions we will use emissions from the Model of Emissions from Gases and Aerosols 
from Nature (MEGANv2.1) (Guenther et al., 2012; 2006; Sindelarova et al., 2014) estimated 
within the Copernicus Atmosphere Monitoring Service (CAMS) (Granier et al., 2019).  The 
parameterization for CO emissions was based on (Tarr et al., 1995). The MEGAN 
framework calculates ecosystem-specific emissions scaled to leaf area, light, and 
temperature.  It is driven by ERA Interim meteorological reanalysis data (Dee et al., 2011).  
Emissions are provided at hourly time steps and 0.5º x 0.5º resolution. 

 

4.4.3 Soils 

 

Soils are generally considered as a sink of CO due to microbial oxidation processes. 
However, CO emissions have been reported from a wide range of soil–plant systems and it 
is not a result of metabolic processes (Conrad & Seiler, 1980).  Soil production and 
consumption fluxes were obtained from (Liu et al., 2018).   

 

4.4.4 Oceanic fluxes 

 

Ocean processes are a minor source in the atmospheric CO budget (6.3 Tg CO a-1, Conte et 
al., 2019). However, these emissions may play non-negligible role at coastal sampling sites.  
We account for ocean CO fluxes by including the estimates by the Nucleus for European 
Modelling of the Ocean - Pelagic Interaction Scheme for Carbon and Ecosystem Studies 
(NEMO-PISCES) in Conte et al., (2019).  The NEMO-PISCES simulation accounts for ocean 
general circulation, biogeochemistry including the main CO sources and sinks 
(photoproduction and bacterial consumption), and sea-air exchange.   

 

4.4.5 Biomass burning 

 

The biomass burning fluxes for CO should be taken from GFASv1.2 as described for CO2. 
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4.4.6 Photochemical 

 

The oxidation of formaldehyde (HCHO), which itself results from the oxidation of CH4 and 
NMVOCs and from biogenic emissions, is the single largest source term in the CO budget.  
Analogously, the reaction CO + OH  CO2 is the largest sink term in the CO budget. 
Interested groups may include the three-dimensional CO source derived from the oxidation 
of HCHO. For this, the mass flux of CO from the CO inversion was obtained from the 
scenario 3 simulation in Zheng et al., (2019).  This is a multispecies inversion, which 
assimilates measurements from MOPITT CO total column, surface methylchloroform 
(CH3CCl3) measurements, OMI formaldehyde total column and GOSAT CH4 total column 
measurements.  An estimate of the atmospheric signal generated by the photochemical 
production of CO is shown in Appendix B.  A first order loss rate is applied to CO to account 
for its reaction with OH based on the rate constants determined by Liu & Sander (2015) and 
the OH climatological concentration fields from Spivakovsky et al., (2000) which were 
distributed within the TRANSCOM-CH4 experiment Patra et al. (2011).  These reaction rate 

constants k [𝑐𝑚3 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒−1 𝑠−1] are given by 

 𝑘 = 𝑘𝑏𝑖(𝑇) +
𝑘0(𝑇)[𝑀]

1+
𝑘0(𝑇)[𝑀]

𝑘∞(𝑇)

×0.6
{1+[log10(𝑘0(𝑇)[𝑀]/𝑘∞(𝑇))]

2
}

−1

, Eq. (35) 

where 

 𝑘𝑏𝑖(𝑇) = 𝐴𝑒
−(

𝐸𝑎
𝑅𝑇⁄ )

, Eq. (36) 

 𝑘0(𝑇) =  𝑘0
300 (

𝑇

300
)

−𝑛
, Eq. (37) 

 𝑘∞(𝑇) =  𝑘∞
300 (

𝑇

300
)

−𝑚
. Eq. (38) 

Here T is temperature [K], [𝑀]  is the air number density [molecule cm-3], kbi 

[ 𝑐𝑚3 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒−1 𝑠−1 ] is the pressure independent bimolecular rate constant, A 

[𝑐𝑚3 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒−1 𝑠−1] is the Arrhenius constant (1.54×10−13), Ea [kJ mol-1] is the activation 

energy (13), R [kJ mol-1 K-1] is the ideal gas constant, k0 and 𝑘∞ [𝑐𝑚6 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒−2 𝑠−2] are 
the low- and high-pressure limiting rate constants derived from measurement values at 300 

K ( 6×10−33  and 1.1×10−12  respectively). The parameters m and n are empirically 
determined (-1.3 and 1.9).   

 

4.4.7 Initial/Boundary conditions 

 

The initial and boundary conditions should be taken from the Tier 1 simulation, which is 
documented in D2.2. Ideally the initial and boundary conditions for CO2 would include CO 
photochemistry (see appendix B).  However, if this is not possible due to computational 
costs or model constraints, each group should decide to either to add the mole fraction fields 
in Appendix B to their initial conditions or to neglect this additional mole fraction.   

 

4.5 Emission datasets summary 

 

Table 4-3: Summary of source and sink processes considered, their 
relationship to the tracers simulated. 

Process CO2 δ14CO2 CO APO 
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Fossil fuel 
combustion 

TNO GHGco -1000 ‰ TNO GHGco 
TNO GHGco + 

COFFEE 

Biofuel 
combustion 

TNO GHGco 

ORCHIDEE-MICT 
δBF 

Wood: 84 ‰ 

Crop-fuel: 18‰ 

TNO GHGco 
TNO GHGco + 

COFFEE 

Non-combustion 
fossil 

TNO GHGco -1000‰ 0 0 

Gross primary 
productivity 

VPRM 

ORCHIDEE-MICT 
δNPP + daily 

partitioning factor 
NPP/GPP 

CAMS-BIO 
MEGANv2.10 

Global biogenic 
emission 

-1.07±0.04 

(biome 
dependent) 

Respiration VPRM 
ORCHIDEE-MICT 

δHR 
Soil fluxes 

(Liu et al., 2018) 

-1.07±0.04 

(soil class 
dependent) 

Ocean 

NEMO-
PlankTOM5  

 (scaled to Jena 
Carboscope global 

total) 

NEMO-PlankTOM5  

Khatiwala et al. 
(2018) 

(Conte et al., 2019) 

NEMO-
PlankTOM5  

(scaled to Jena 
Carboscope 
global total) 

Biomass burning GFASv1.2 

ORCHIDEE-MICT 
δBF 

Wood: 84 ‰ 

Crop/grass: 18‰ 

GFASv1.2 -1.11 to -1.49 

Nuclear power 
plants 

0 

LSCE database  

Graven et al. 
(2011), Zazzeri et 

al. (2018) 

0 0 

Photochemical 

LMDZ 3D fields of 
CO destruction 
from inversion 
(Zheng et al., 

2019) 

LMDZ 3D fields of 
δ14CO2 and CO2 
concentrations, 
trend corrected 

LMDZ 3D fields of 
CO production from 
inversion (Zheng et 

al., 2019) 

0.5

𝑦0
𝑂2

𝑦𝐶𝑂 

Cosmogenic 0 

LMDZ 3D fields of 
δ14CO2 and CO2 
concentrations, 
trend corrected 

0 0 

Initial/Boundary 
conditions 

Tier 1 simulation 

LMDZ 3D fields of 
δ14CO2 and CO2 
concentrations, 
trend corrected 

Tier 1 simulation 
From APO 
inversion 

apo99_v1.6 

5 Inversion comparability  
 
In WP4, several groups will performed simulations of uncertainty reduction in fossil fuel CO2 
emissions with different models and targeting different regions, time resolutions and 
emission partitioning.  However, it is necessary to have comparable quantities.   
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5.1 Measurement error 

 

We set up comparable measurement errors.  In Table 5-1, we have the typical and target 
measurement errors for the atmospheric species considered in this study.  We recommend 
assigning these errors to all data and considering scenarios with the typical and with the 
target measurement uncertainties. 

 

Table 5-1: Typical and target measurement error for atmospheric species 
considered in this study. 

Species 
Typical 

measurement 
error 

Target 
measurement 

error 
Unit 

CO2 0.10a  0.05a ppm 

𝛿14CO2 2.00b  0.50a ‰ 

CO 5.00a      2.00a ppb 

𝛿(𝑂2 𝑁2⁄ ) 5.00 2.00 permeg 

APOc 1.00 0.20 ppmd 

a: Crotwell & Steinbacher (2018) 
b: Gamnitzer et al. (2006) 
c: Heimann, (2007) 
d: To have a comparable mole fraction basis a conversion 
factor of 4.77 permeg ppm-1 (Keeling et al., 1998) was 
assumed. 

 

 

If 𝛿14CO2 and APO measurements are modelled as independent CO2, 14CO2, O2 and even 
N2 mole fractions the uncertainty must be propagated.  For 4CO2, this is: 

 𝜎 𝐶14 = 𝑦 𝐶14 √(
𝜎𝐶𝑂2

𝑦𝐶𝑂2

)
2

+ (
𝜎𝑅14𝐶/12𝐶

𝑅14𝐶/12𝐶
)

2

−
COV(𝑦𝐶𝑂2 ,𝑅14𝐶/12𝐶)

𝑦𝐶𝑂2∙𝑅14𝐶/12𝐶
, Eq. (39) 

where y [ppm] is the mole fraction, 𝜎 [ppm] is the uncertainty and R is the 14CO2/CO2 ratio.  
In the case of APO, it must be taken into account the uncertainty of APO is the sum of the 
uncertainty of the 𝛿(𝑂2 𝑁2⁄ ) ratio and the CO2 mole fraction, 

 𝜎𝐴𝑃𝑂 = √𝜎𝛿(𝑂2 𝑁2⁄ )
2 + (|

𝛼𝐿

𝑦0
𝑂2

| 𝜎𝐶𝑂2
)

2

+ 2𝐶𝑂𝑉 (𝛿(𝑂2 𝑁2⁄ ), |
𝛼𝐿

𝑦0
𝑂2

| 𝑦𝐶𝑂2
) . Eq. (40) 

 

5.2 Model error 

 

The model error reflects the ability of the transport model to realistically simulate the 
atmospheric mole fraction.  It is expected that this ability markedly varies according to the 
complexity of the local circulation as well as that of the surface fluxes surrounding the 
individual sites.  Initially, we propose that all sites should be classified according to their 



CO2 HUMAN EMISSIONS 2019 

D4.3 Attribution Problem Configurations  42 

location into the following classes: remote, shore/oceanic, mountain, tall tower, continental, 
and urban/strong sources. These site classes are then assigned different model 
uncertainties (without any time dependence) for the standard inversion set-up.  The base 
value (Table 5-2) refers to remote station.  Other station classes are assigned the multipliers 
in Table 5-3.  Although the values are rather arbitrary (given the poor knowledge about the 
actual model errors), this scheme is simple and allows testing different values easily.  

   
Table 5-2: Base model error assumed for the different species.   

Species 
Base 

model error 
Unit 

Base model 
error in 

alternative 
unitsa 

Unit 

CO2 1.00  ppm   

14CO2 1.26 x 10-12  ppm 3.00 ‰ 

CO 7.00 ppb   

O2 1.00 ppm 4.77 permeg 

APO 1.00 ppm 4.77 permeg 

a: Alternative units were calculated base on a 𝛿14CO2 signal of 17‰, a CO2 mole fraction of 350 ppm 
and an oxygen mole fraction of 209500 ppm. 

 

Table 5-3: Station class multipliers. 

Station Class Multiplier 

Remote 1.0  

Shore/Oceanic 1.5  

Continental 3.0 

Mountain 1.5 

Tall tower 1.0 

Urban/strong 
sources 

5.0 

 

The proposed values are not well known and rather arbitrary, especially for 𝛿14CO2, CO and 
APO.  Furthermore, CO is not a well-mixed tracer.  Thus, it may exhibit strong spatial 
gradients especially in the summer months.  An alternative approach would be for one of the 
groups performing three-dimensional simulations of the entire European domain, or at least 
most of it, to produce a climatology (monthly or weekly resolution) of the standard deviation 
of the mole fraction per gridcell with the gridcells around it.  This approach has been used in 
past publications (Rödenbeck et al., 2003) 

 

5.3 Stations 
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The main objective of WP4 is to determine the optimal network to estimate fossil fuel 
combustion CO2 emissions.  Therefore, we shall perform uncertainty reduction calculations 
with different network configurations.  We have created the two overall networks proposals: 
a more rural/background configuration (but which also includes some urban stations) and a 
configuration centered on large urban areas (Figure 5.1).  These network configurations are 
based on the distribution of ICOS, NOAA and other GAW air sampling stations because we 
assume there is already infrastructure that would facilitate the establishment of equipment 
for continuous trace measurements and flask samples and that the stations were 
established on locations with good conditions to observe atmospheric properties. If no air 
sampling station was available other GAW stations with different types of measurements 
were taken, e.g. meteorology, UV radiation, deposition, etc.  Meanwhile, urban stations were 
chosen to be around the largest urban areas in Europe. If no GAW station was available, 
local meteorological or air quality sampling stations were chosen, or, if none of these were 
available, the roofs of local science and engineering faculties were taken.   

 

In the case of the rural/background network, several calculations shall be performed with 
varying network density shall be used for the calculations similar to what was done in (Wang 
et al., 2018).  The design principal would be to include stations that collect signals from 
larger areas in the sparser network configurations, while more regionally or locally influenced 
stations are included for the denser networks.   The main proposed network configurations 
are: 

• The current ICOS network 

• Network configuration based on a more evenly distribution in three densities 

o Sparse 

o Medium 

o Dense 

Additionally, in the case of the simulations with 14CO2, there shall be a configuration with 
dense measurements of the other tracers and a sparse network of 14CO2 measurements due 
to the higher costs of this type of measurement. In the case of the urban configuration, 
besides what is shown in Figure 5.1, a dense urban network configuration around the key 
urban areas within regions of focus of groups involved in CHE shall be considered.  These 
urban areas would be Paris, Berlin, Oslo, London, the Randstand metropolitan area, the 
Ruhr region, the Rhine-Main region (Frankfurt, Heidelberg, Mainz), the Lille European 
Metropolitan Area and Zurich. As for the rural network, in the case of the simulations with 
14CO2, there shall be a configuration with dense measurements of the other tracers and a 
sparse network of 14CO2 measurements.  We aim to have common observation vectors for 
all groups involved in WP4 only varying due to the different spatial and temporal domains 
considered.   
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Figure 5.1 Proposed rural and urban network configurations.  Station classes 
are C: Continental/Rural, S: Shore, R: Remote, M: Mountain, T: Tall tower, U: 
Urban.   

 

5.4 Flux integration regions  

 

While calculations will be performed by a variety of models over different domains, time 
spans and resolutions, we can agree that common integration regions are required in order 
to have comparable results.  We have created a set of regions at sub-national level. These 
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regions mostly include defined states, provinces or statistical regions (Figure 5.2). However, 
in some cases the regions were selected because of transport, climate or land cover 
characteristics. The set of regions includes the largest urban areas in Europe and the 
maritime exclusive economic zones of each country (divided by basin, e.g. Mediterranean, 
Atlantic and English Channel for France). The files are available in an ESRI shapefile format 
or as netcdf binaries gridded with the resolution and domain extent from the TNO inventory 
(6 km and 1 km) as well as in the resolution we will use for the STILT runs of 5 and 10 km.  

 

 

Figure 5.2 Integration regions created over the whole TNO GHGco emission 
inventory range at 6 km resolution.   

 

These files can be retrieve provisionally from the FTP server ftp://ftp.bgc-jena.mpg.de 
(username "anonymous" and the password "none") under the path /pub/outgoing/tnunez/.  
The files have the names: CHE_WP4_integration_regions_20190814_*.nc 

• In the files you will find the following variables: 

o country_name 

o a3_un_country_code: 3-letter code per country 

o region_name: name of each integration region 

o dxyp (gridcell area) 

o region (longitude x latitude x object number): region mask for individual 
regions 

o region_map (longitude x latitude): region with largest coverage per grid box 

We selected a few regions, which should serve for comparison.  The uncertainty per gridcell 
for the different emission categories shall be propagated to the scale of these regions and 
scaled by a global factor so that all groups use the same uncertainty assumptions.  The 
regions of interest shall be chosen with the following criteria: 1) fully contained within the 
TNO-GHGco 1km x 1km ensemble inventory, 2) of interest for some specific groups, or 3) 
characteristic for some emission categories.  The proposed categories are the following: 

1. Paris urban area and/or Ile de France 
2. London urban area and/or Greater London 
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3. Berlin urban area and/or Berlin state region 
4. Oslo urban area and/or Oslo region 
5. Zurich urban area and/or Zurich region 
6. Randstad urban region 
7. Lille European Metropolitan Area 
8. Ruhr urban region 
9. Frankfurt urban region 
10. Munich urban region 
11. Silesia, Poland 
12. Switzerland 
13. Netherlands 
14. Belgium 
15. Luxemburg 
16. Germany 
17. Czech Republic 
18. Austria 
19. North sea emissions from Netherlands, Belgium and Germany 

 

5.5 Flux uncertainty assumptions  

 

We set primarily the uncertainty per gridcell of CO2 emissions based on the spread of 
different estimates, the mismatch of the priors against observations, expert knowledge, or an 
educated guess.  The uncertainty of emissions of the other tracers is defined relative to the 
uncertainty of CO2 emissions and the uncertainty of the respective 14CO2/CO2, O2/CO2 and 
CO/CO2 ratios.  Emission categories, which are not taken into account in the optimization, 
have no uncertainty, but some groups may choose to do sensitivity testing with different 
magnitudes of these emissions.   

 

5.5.1 Fossil fuel combustion 

5.5.1.1 CO2 

 

TNO has produced the new TNO-GHGco inventory at 1/60º x 1/120º resolution 
(approximately 1 km x 1 km) over Central Europe (ranging from 2ºW to 19ºE and from 47ºN 
to 57ºN) for year 2015. The inventory included ten different emission calculations per emitter 
for the categories with randomly varying parameters of the emission model for each species. 
The point emitters from the TNO-GHGco inventory were aggregated onto a 1/120º x 1/60º 
resolution grid for each process for each fuel type and for each of the ten scenarios (figure 
A.1).  The main goal of providing ten different estimates or scenarios of the CO2 and CO 
emissions was to provide an estimate of uncertainty.  

 

We propose to use common domain-wide relative uncertainty (𝜎/µ) per gridcell to each 
emission category, which should be the median relative uncertainty (not counting gridcells 
with no emissions, see table 6).  Additionally, each group may decide to do sensitivity tests 
with a lower and upper bound uncertainty estimate (25th and 75th percentile) according to the 
table in section 5.6.  When aggregating emissions to a different grid, uncertainty propagation 
should be taken into account.   

 



CO2 HUMAN EMISSIONS 2019 

D4.3 Attribution Problem Configurations  47 

Table 5-4: Relative uncertainty [%] estimates for fossil fuel combustion CO2 
emissions per emission category.   

Source 25th percentile 50th percentile 75th percentile 

A: Public power 43.5 86.4 137.0 

B: Industry 8.3 18.2 32.0 

C: Other stationary combustion 12.2 15.4 19.8 

D: Fugitive 25.5 34.1 41.1 

E: Solvents 25.0 50.0 51.0 

F1: Road transport (gasoline) 10.4 13.3 16.9 

F2: Road transport (diesel) 8.1 9.9 12.0 

F3: Road transport (LPG) 10.2 13.9 16.5 

G: Shipping   7.9 7.9 7.9 

H: Aviation 9.8 9.8 9.8 

I: Off-road transport 15.2 22.4 34.4 

J: Waste 92.0 156.4 321.0 

L: Agriculture 14.1 65.3 285.4 

Total 8.3 11.3 16.9 

 

5.5.1.2 𝜹14CO2 

 

By definition of fossil CO2 emissions, the uncertainty is zero.   

 

5.5.1.3 CO 

 

The ratio between emitted CO and CO2 for fossil fuel combustion is related to the fuel type 
and instantaneous combustion efficiency and is quite uncertain.  To represent this, the TNO-
GHGco inventory also includes ten scenarios of CO emissions.  After calculating the 
CO/CO2 ratio per gridcell per emission category, we estimate as well a median, lower bound 
and upper bound (25th and 75th percentile) overall relative uncertainty (𝜎/µ) of the CO/CO2 
ratio of each emission category (table 7).  The absolute uncertainty of the CO emissions 
would be the sum in quadrature of the relative uncertainties of the CO2 emissions and the 
CO/CO2 ratio multiplied times the magnitude of the CO emissions. 

 

Table 5-5: Relative uncertainty [%] estimates for fossil fuel combustion 
CO/CO2 ratio per emission category.   

Source 25th percentile 50th percentile 75th percentile 

A: Public power 46.7 58.4 94.8 

B: Industry 23.8 38.9 74.5 

C: Other stationary combustion 15.0 19.3 27.1 



CO2 HUMAN EMISSIONS 2019 

D4.3 Attribution Problem Configurations  48 

D: Fugitive 15.8 28.6 495.2 

E: Solvents    

F1: Road transport (gasoline) 24.2 29.4 36.1 

F2: Road transport (diesel) 23.3 30.9 34.1 

F3: Road transport (LPG) 34.9 57.6 94.9 

G: Shipping    

H: Aviation    

I: Off-road transport 29.7 41.3 78.1 

J: Waste 306.2 368.3 788.9 

L: Agriculture 67.5 32.2 42.8 

Total 16.7 22.9 32.3 

 

5.5.1.4 APO 

 

The global average fossil fuel O2:CO2 combustion ratio, αF, depends not only on the ratio of 

each fuel type, but also on the relative contribution of each fuel type to the global mix. The 
overall uncertainty of ±0.04 is dominated by uncertainty in the fuel relative contributions, as 
related to uncertainty in the production figures for each fuel type (Keeling, 1988; Manning & 
Keeling, 2006).  Non-combustion sources do not consume oxygen and thus their APO 
uncertainty is zero.   

 

5.5.2 Biofuel combustion 

5.5.2.1 CO2 

 

The same strategy as for fossil fuel combustion is to be followed for biofuel combustion 
emissions.  Table 7 shows domain-wide relative uncertainty estimates for biofuel combustion 
based of the spread in the ten scenarios of the TNO GHGco 1km x 1km inventory. 

 

Table 5-6: Relative uncertainty [%] estimates for biofuel combustion CO2 
emissions per emission category.   

Source 25th percentile 50th percentile 75th percentile 

A: Public power 32.2 61.5 109.4 

B: Industry 18.3 29.0 59.7 

C: Other stationary combustion 17.1 22.1 30.1 

D: Fugitive    

E: Solvents    

F1: Road transport (gasoline) 7.0 7.0 7.0 

F2: Road transport (diesel) 7.0 7.0 7.0 

F3: Road transport (LPG) 7.0 7.0 7.0 
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G: Shipping    

H: Aviation    

I: Off-road transport 15.2 22.4 34.4 

J: Waste    

L: Agriculture 14.1 65.3 285.4 

 

5.5.2.2 𝜹14CO2 

 

The model-data mismatch was of the same magnitude of the measurement precision of 
observed plant samples (3‰) (Bozhinova, 2015).   

 

5.5.2.3 CO 

 

As for fossil fuel inventory, the TNO-GHGco inventory also includes ten scenarios of CO 
emissions for biofuel emissions.  Therefore, we also calculate the CO/CO2 ratio per gridcell 
per emission category and obtain a median, lower bound and upper bound (25th and 75th 
percentile) overall relative uncertainty (table 9).   

 

Table 5-7: Relative uncertainty [%] estimates for biofuel combustion CO/CO2 
ratio per emission category.   

Source 25th percentile 50th percentile 75th percentile 

A: Public power 22.2 22.2 40.5 

B: Industry 23.3 31.3 50.9 

C: Other stationary combustion 22.7 37.9 44.8 

D: Fugitive    

E: Solvents    

F1: Road transport (gasoline) 7.0 7.0 7.0 

F2: Road transport (diesel) 7.0 7.0 7.0 

F3: Road transport (LPG) 7.0 7.0 7.0 

G: Shipping    

H: Aviation    

I: Off-road transport    

J: Waste    

L: Agriculture 14.1 65.3 285.4 

Total    

 

5.5.2.4 APO 
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Biofuels have an oxidative ratio that corresponds to that terrestrial biospheric release (van 
der Laan-Luijkx et al., 2010).  Therefore, we assume an oxidative ratio uncertainty of 0.05 
(Manning & Keeling, 2006; Severinghaus, 1995).   

 

5.5.3 Biogenic fluxes 

5.5.3.1 CO2 

 

Kountouris et al. (2018) provided domain-wide yearly uncertainty estimates of net ecosystem 
exchange fluxes for different land cover classes (SYNMAP), which stem from the 
comparison of gridcell level fluxes with eddy covariance measurements.  We propose to 
follow the same strategy but for partitioned gross primary productivity and ecosystem 
respiration fluxes separately.  Additionally it would be of use to have an uncertainty estimate 
per month to account for seasonal misrepresentation of the fluxes.     

 

5.5.3.2 𝜹14CO2 

 

Bozhinova et al. (2014) suggested that the resulting gradients in 14CO2 in plant samples can 
vary ±3 - 7‰ from the atmospheric samples.  We assume this uncertainty for biospheric 
fluxes.   

 

5.5.3.3 CO 

 

See section 5.5.6. 

 

5.5.3.4 APO 

 

We assume an oxidative ratio uncertainty of 0.05 (Manning & Keeling, 2006; Severinghaus, 
1995).   

 

5.5.4 Ocean fluxes 

5.5.4.1 CO2 

 

Similarly to the biogenic fluxes, we shall compare the prior fluxes with observations to derive 
an average relative uncertainty per gridcell for example from SOCAT. Wang (2016) 
assumed an uncertainty 0.3 g C m-2 d-1 for ocean fluxes everywhere.   

 

5.5.4.2 𝜹14CO2 

 

We assume an uncertainty of 14CO2 fluxes per gridcell of 15% based on Sweeney et al., 
(2007). 
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5.5.4.3 CO 

 

See section 5.5.6. 

 

5.5.4.4 APO 

 

Similarly to CO2 fluxes, the uncertainty of O2 fluxes will be derived from measurements from 
Pickers (2016).   

 

5.5.5 Biomass burning  

 

We assume a base uncertainty of 26.6% for the fire radiative power estimate based on 
(Freeborn et al., 2014).  

 

5.5.5.1 CO2 

 

The uncertainty of for the CO2 emission factors from Andreae & Merlet (2001) and it is 
added quadrature.   

 

5.5.5.2 𝜹14CO2 

  

We assume the same uncertainty as for biospheric fluxes.   

 

5.5.5.3 CO 

 

The uncertainty of the CO/CO2 ratio is obtained from emission factors from Andreae & 

Merlet (2001) and is added quadrature.   

 

5.5.5.4 APO 

 

We assume an oxidative ratio uncertainty of 0.05 (Manning & Keeling, 2006; Severinghaus, 
1995).   

 

5.5.6 Other processes 

 

Other processes, e.g. for example nuclear power plants, cosmogenic or photochemical 
production (if represented) or soil processes for CO must be given an uncertainty in order to 
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have an impact on the uncertainty reduction calculation.  Hence we shall assume 50% per 
gridbox.   

5.5.7 Summary 

 

To be comparable, a list of the yearly and monthly uncertainties per tracer for the regions 
listed in section 5.4 will be distributed so that each group can scale their uncertainty 
estimates to match the list.   

 

Table 5-8: Summary of uncertainty assumptions. Values in % (also in 
referenced tables or sections) are with respect to the a priori emission 
magnitude per gridcell.   

Process CO2 δ14CO2 

[‰]* 

CO/CO2 O2/CO2 

Fossil fuel combustion Table 5-4 0.00 Table 5-5 0.04 

Biofuel combustion Table 5-6 3.00 Table 5-7 0.05 

Non-combustion fossil Industry in Table 5-4 0.00 0.00 0.00 

Gross primary productivity See section 5.5.3.1 4.50 50 % 0.05 

Respiration See section 5.5.3.1 4.50 50 % 0.05 

Ocean 0.3 g C m-2 d-1 15 % 50 % 20 % 

Biomass burning 26% + 𝜎𝐸𝐹** 4.50 𝜎𝐸𝐹** 0.05 

Nuclear power plants 0.00 50 % 0.00 0.00 

Photochemical*** 50 % 0.00 50 % 50 % 

Cosmogenic*** 0.00 50 % 0.00 0.00 

Initial/Boundary conditions*** 50 % 50 % 50 % 50 % 

Nitrogen fluxes*** 50 % 50 % 50 % 50 % 

*: Values without unit are the absolute uncertainty of the δ14CO2 signal of the process. 

**: 𝜎𝐸𝐹 is the uncertainty in the emission factors from Andreae & Merlet (2001) 

***: optional component 

 

 

5.6 Simulation protocol 

 

To obtain a good characterization of the ability of different networks to estimate fossil fuel 
CO2 emissions, we propose the following simulation protocol, independently of the spatial 
and temporal domain of focus.   
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Table 5-9 Proposed simulation protocol. 

Tracers Station network Anthropogenic 
emission 

uncertainty 

Biospheric 
flux 

uncertainty 

CO2 Current ICOS Median Standard 

CO2+14CO2 Current ICOS Median Standard 

CO2+14CO2 Current ICOS/14CO2 sparse Median Standard 

CO2+CO Current ICOS Median Standard 

CO2+APO Current ICOS Median Standard 

CO2+14CO2+CO Current ICOS Median Standard 

CO2+14CO2+CO Current ICOS/14CO2 sparse Median Standard 

CO2+14CO2+APO Current ICOS Median Standard 

CO2+14CO2+APO Current ICOS/14CO2 sparse Median Standard 

CO2+CO+APO Current ICOS Median Standard 

CO2+14CO2+CO+APO Current ICOS Median Standard 

CO2+14CO2+CO+APO Current ICOS/14CO2 sparse Median Standard 

CO2 Sparse Median Standard 

CO2+14CO2 Sparse Median Standard 

CO2+CO Sparse Median Standard 

CO2+APO Sparse Median Standard 

CO2+14CO2+CO Sparse Median Standard 

CO2+14CO2+APO Sparse Median Standard 

CO2+CO+APO Sparse Median Standard 

CO2+14CO2+CO+APO Sparse Median Standard 

CO2 Medium Median Standard 

CO2+14CO2 Medium Median Standard 

CO2+CO Medium Median Standard 

CO2+APO Medium Median Standard 

CO2+14CO2+CO Medium Median Standard 

CO2+14CO2+APO Medium Median Standard 

CO2+CO+APO Medium Median Standard 

CO2+14CO2+CO+APO Medium Median Standard 

CO2 Dense Median Standard 

CO2+14CO2 Dense Median Standard 

CO2+14CO2 Dense/14CO2 sparse Median Standard 

CO2+CO Dense Median Standard 
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Tracers Station network Anthropogenic 
emission 

uncertainty 

Biospheric 
flux 

uncertainty 

CO2+APO Dense Median Standard 

CO2+14CO2+CO Dense Median Standard 

CO2+14CO2+CO Dense/14CO2 sparse Median Standard 

CO2+14CO2+APO Dense Median Standard 

CO2+14CO2+APO Dense/14CO2 sparse Median Standard 

CO2+CO+APO Dense Median Standard 

CO2+14CO2+CO+APO Dense Median Standard 

CO2+14CO2+CO+APO Dense/14CO2 sparse Median Standard 

CO2 Dense High Standard 

CO2+14CO2 Dense/14CO2 sparse High Standard 

CO2+14CO2+CO Dense/14CO2 sparse High Standard 

CO2+CO Dense High Standard 

CO2+APO Dense High Standard 

CO2+14CO2+CO+APO Dense/14CO2 sparse High Standard 

CO2 Dense Low Standard 

CO2+14CO2 Dense/14CO2 sparse Low Standard 

CO2+14CO2+CO Dense/14CO2 sparse Low Standard 

CO2+CO Dense Low Standard 

CO2+APO Dense Low Standard 

CO2+14CO2+CO+APO Dense/14CO2 sparse Low Standard 

CO2 Dense Median Triple 

CO2+14CO2 Dense/14CO2 sparse Median Triple 

CO2+14CO2+CO Dense/14CO2 sparse Median Triple 

CO2+CO Dense Median Triple 

CO2+APO Dense Median Triple 

CO2+14CO2+CO+APO Dense/14CO2 sparse Median Triple 

CO2 Dense High Triple 

CO2+14CO2 Dense/14CO2 sparse High Triple 

CO2+14CO2+CO Dense/14CO2 sparse High Triple 

CO2+CO Dense High Triple 

CO2+APO Dense High Triple 

CO2+14CO2+CO+APO Dense/14CO2 sparse High Triple 
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Tracers Station network Anthropogenic 
emission 

uncertainty 

Biospheric 
flux 

uncertainty 

CO2 Urban hotspots Median Standard 

CO2+14CO2 Urban hotspots Median Standard 

CO2+CO Urban hotspots Median Standard 

CO2+APO Urban hotspots Median Standard 

CO2+14CO2+CO Urban hotspots Median Standard 

CO2+14CO2+APO Urban hotspots Median Standard 

CO2+CO+APO Urban hotspots Median Standard 

CO2+14CO2+CO+APO Urban hotspots Median Standard 
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A. Analysis of 1-km emission inventory ensemble for Central 
Europe 

 
TNO has produced the new TNO-GHGco inventory at 1/60º x 1/120º resolution 
(approximately 1 km x 1 km) over Central Europe (ranging from 2ºW to 19ºE and from 47ºN 
to 57ºN) for year 2015.  This inventory contains both a list of point emitters for CO2 and CO 
as well as gridcell values for area sources, accompanied by their grid index, process (G-
NFR categories), country, and by fuel type (fossil fuel or biofuel). The inventory included ten 
different emission calculations per point source or gridcell with randomly varying parameters 
of the emission model for each species (Monte Carlo approach). These data can be 
downloaded from the TNO ftp site, with access information available from Hugo Denier van 
der Gon (hugo.deniervandergon@tno.nl) upon request. 
 
 

A.1. Emissions 

 

For the year 2015, the TNO-GHG-co (1 km x 1km) inventory contains 1.92 ± 0.01 and 0.26 ± 
0.01 Pg CO2 a-1 emissions from fossil fuels and biofuels combustion respectively (where 
µ±𝜎, are the mean and standard deviation for the emissions over the entire central European 
domain).  Furthermore, the inventory contains 6.7 ± 0.31 and 2.49 ± 0.26 Tg CO a-1 
emissions from fossil fuels and biofuels respectively.  For CO2, the largest fossil fuel 
emissions came from the power generation, industry, stationary combustion and road 
transport (diesel and gasoline) sectors with averages of 0.594 ± 0.008, 0.457 ± 0.002, 0.32 ± 
0.003, 0.299 ± 0.005 and 0.126 ± 0.002 Pg CO2 a-1 respectively (Figure A.1). Meanwhile, the 
lowest emissions were from waste, solvents, road transport (LPG) and agriculture, with 
averages of 0.002, 0.005, 0.005 and 0.01 Pg CO2 a-1 respectively.  For biofuel combustion, 
the largest emissions emission came from power generation, stationary combustion, 
industry, and road transport (diesel and gasoline) with averages of 0.103 ± 0.003, 0.088 ± 
0.006, 0.046, 0.015 and 0.005 respectively.  No biofuel emissions were provided for 
solvents, road transport (LPG), shipping, aviation and waste.  In the case of CO, the largest 
emissions from fossil fuels were found for industry, road transportation (gasoline), off-road 
transportation, stationary combustion, road transportation (diesel) and power generation with 
averages of 2.591 ± 0.05, 1.738 ± 0.313, 0.792 ± 0.105, 0.788 ± 0.062, 0.323 ± 0.043 and 
0.212 ± 0.003 Tg CO a-1 respectively.  The agricultural sector was a small sink of CO (-0.001 
± 0.02 Tg CO a-1).  With respect to biofuels, the largest CO emissions were from stationary 
combustion, industry, agriculture, road transportation (gasoline), power generation and road 
transportation (diesel) with average emissions of 2.199 ± 0.267, 0.114 ± 0.002, 0.071, 0.061, 
0.028 ± 0.002 and 0.16 Tg CO a-1 respectively.  
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Figure A.1 Box plots showing the spread of the total emissions per for the ten 
emission scenarios. 

 

The emissions from the TNO-GHGco inventory were aggregated onto a 1/120º x 1/60º 
resolution grid for each process for each fuel type and for each of the ten scenarios (Figure 
A.2).  Clear spatial distribution differences emerge between CO2 and CO with more CO2 
emissions at power stations, urban areas and roads and relative low emissions from 
biofuels. In contrast, CO emissions are relatively higher over roads, rural areas, and it is 
particularly strong for biofuel emissions.   

 

A.2. Emission uncertainty 

 

The main goal of providing ten different estimates or scenarios of the CO2 and CO emissions 
was to provide an estimate of uncertainty.  By gridding each scenario to the 1/60º x 1/120º 
resolution, it was possible to take the standard deviation per gridcell per process to obtain a 
measure of the uncertainty.  While the spatial distribution of the absolute uncertainty 
reflected the spatial distribution of the emissions, the relative uncertainty (𝜎/µ) revealed that 
the parameters resulting in the variability between the scenarios are often country 
dependent (Figure A.3).   
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Figure A.2 Mean CO2 and CO emissions per gridcell for each fossil fuel and 
biofuel combustion sector and total emissions per gridcell (bottom row). 
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Figure A.3 Relative uncertainty (𝜎/µ, %) of CO2 and CO emissions per gridcell 
for each fossil fuel and biofuel combustion sector and total relative uncertainty 
(bottom row). 
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A.3. CO/CO2 ratios 

 

For the setup of the a priori covariance matrix, it is of interest to know the uncertainty how 
the CO/CO2 ratio varies between the different emission processes because this depends on 
the fuel type and the instantaneous combustion efficiency, and thus it is highly variable and 
uncertain.  The overall average CO/CO2 ratio (molar) of the total emissions was 0.0054 ± 
0.0003 and 0.0148 ± 0.0014 for fossil fuels and biofuels respectively.  However, we were 
able to distinguish typical CO/CO2 ratios by process (Figure A.4 and Figure A.5).  For fossil 
fuels, the largest CO/CO2 ratios were found for off-road transportation, waste burning, road 
transportation (gasoline and LPG) and industry with averages of 0.0437 ± 0.0057, 0.029 ± 
0.006, 0.0217 ± 0.004, 0.0187 ± 0.0059, and 0.0086 ± 0.0002 respectively.  In contrast, 
emissions from power generation, fugitives and road transport (diesel) had particularly low 
CO/CO2 ratios: 0.0006, 0.0015 and 0.0017 ± 0.0002.  The agricultural sector had small 
negative CO/CO2 ratios because of the overall negative CO emissions, and had a very large 
relative uncertainty of 1075%.  For biofuels, the sectors with the largest CO/CO2 ratios were 
agriculture, stationary combustion, road transport (gasoline and LPG), and industry with 
averages of 0.0608, 0.0391 ± 0.0036, 0.202, 0.0071 and 0.0035 ± 0.0001.  Again, diesel 
motor vehicles had a much lower CO/CO2 ratio than their gasoline counterparts, 0.0017.  
Power generation also had a very small CO/CO2 ratio of 0.0004.  No CO emissions from 
biofuels were given for fugitives and off-road transportation.   

 

 

Figure A.4 CO2 against CO emissions per process per country for fossil fuels 
(left) and biofuels (right). 
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Figure A.5 Spread of average CO/CO2 ratios (over entire central European 
domain) per process for the different emission scenarios. 

 

The main driver of variations in the CO/CO2 ratio is the combustion efficiency.  In this case 
we defined the combustion efficiency, CE, as  

𝐶𝐸 =
𝐶𝑂2

𝐶𝑂2 + 𝐶𝑂
 

Under complete combustion (all fuel is converted to CO2), the combustion efficiency is 
100%.  For fossil fuels, the most efficient processes (all above 99% efficiency) were power 
generation, fugitives, road transport (diesel), shipping, stationary combustion, industry and 
aviation (Figure A.6).  In contrast, the most inefficient processes were waste combustion, off-
road transport, and road transport (gasoline) with averages of 0.6524 ± 0.4119, 0.952 ± 
0.0349, and 0.9777 ± 0.0127.  The standard deviations between the estimates of 
combustion efficiency were generally inversely proportional to the combustion efficiency, 
which means the less efficient processes have a more uncertain CO/CO2 ratio.  For biofuels, 
the most efficient processes were off-road transport, power generation, road transport 
(diesel), industry and road transport (LPG), all above 99%.  In contrast, the most inefficient 
combustion processes for biofuels were agriculture, stationary combustion and road 
transport (gasoline) with averages of 0.943, 0.959 ± 0.017 and 0.979 ± 0.011.  Moreover, we 
found a strong dependency of the combustion efficiency on the country, but the proportion of 
the sources contained within it drives the overall combustion efficient of a country.   
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Figure A.6 Average combustion efficiency for fossil fuel (left) and biofuel 
(right) per process per country. 

 

Surprisingly, we found that apart from process, the CO/CO2 ratio in the TNO GHGco 
inventory is highly dependent on the country (figures A.4 and A.6).    The relative uncertainty 
was also strongly determined by the country (figure A.5).  
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Figure A.7 Average CO/CO2 ratio (molar) per gridcell for each emission 
process. 
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Figure A.8 Relative uncertainty (𝜎/µ, %) of the CO/CO2 ratio (molar) per gridcell 
for each of the emission processes and the total emissions (bottom row). 
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A.4. Spatial correlations 

 

The inversion uses can use the differences in the spatiotemporal distribution of emissions to 
distinguish the contribution of different processes.  As such it is necessary to evaluate how 
the spatial distribution of the different process contained in the TNO GHGco inventory 
relates to each other.  

  

 

Figure A.9 Spatial correlation between emission process for CO2 (left) and CO 
(middle) and between the emission processes for CO2 and the emission 
process from CO (right).   

 

A.4.1. Spatial correlations between CO2 and CO emissions 

 

Surprisingly, we found only moderate spatial correlations between the CO2 and the CO 
emissions for many of the processes (Figure A.9, diagonal of matrices on the right column).  
For fossil fuels, the processes with the lowest correlations between the spatial distributions 
of their CO2 and CO emissions were waste combustion, power generation, stationary 
combustion and off-road transportation with correlation coefficients, R2, of 0.182, 0.209, 
0.338 and 0.395 respectively. Remarkably, power generation and stationary combustion had 
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such a low correlation between their CO2 and CO emissions due to their overall high 
combustion efficiency.  In contrast, the process with the highest correlations between the 
spatial distribution their CO2 and CO emissions were shipping, road transportation (diesel), 
aviation, and road transport (gasoline) with correlation coefficients, R2, of 0.988, 0.939, 
0.923 and 0.905 respectively.  These components share two characteristics: they are in 
general confined to certain locations, e.g. oceans and water ways, roads and airports, and 
except for gasoline engines, they are characterized by high combustion efficiencies.  For 
biofuel combustion, the processes with the lowest correlations between the spatial 
distributions of their CO2 and CO emissions were industry, fugitives and road transport 
(LPG) (0.112, 0.191 and 0.366 respectively). In contrast, the processes with the highest 
correlation coefficients between the spatial distributions of their CO2 and CO emissions were 
agriculture, road transport (diesel), stationary combustion and road transport (gasoline) with 
correlations coefficients, R2, of 0.9999, 0.9692, 0.9476 and 0.9167 respectively.   

 

A.4.2. Spatial correlations between emission processes 

 

The spatial correlations between the emission processes are important to understand which 
processes can we aggregate to reduce the degrees of freedom of the optimization. 
Expectedly, for CO2 fossil fuel emissions, the three road-transportation sectors are spatially 
highly correlated with each other (Figure A.9), particularly for diesel and gasoline vehicles 
(R2 = 0.898), while the abundance of LPG powered vehicles may vary by region (R2 of 0.602 
and 0.591 with gasoline and diesel vehicles respectively).  Furthermore, road transportation 
emissions are also correlated spatially with stationary combustion, solvent, and off-road 
transportation emissions (average R2 of 0.299, 0.257 and 0.204 respectively). Stationary 
combustion has the strongest spatial overlap with other process, and it has a particularly 
high spatial correlation with solvents (R2 of 0.851), a moderate spatial correlation with off-
road transportation (R2 of 0.511) and road transportation.  In contrast, the aviation, waste, 
fugitives, power generation and industry emissions are spatially relatively independent to 
other processes.  For biofuel CO2 emissions, these correlation patterns are kept with the 
difference that there are no biofuel emissions for the solvents, shipping, aviation and waste 
sectors.  With respect to CO emissions, the correlations between the processes are also 
similar to those found with the CO2 emissions with the difference that there are no CO 
emissions from solvents (fossil fuels) and from off-road transportation (biofuels).   

 

A.4.3. Spatial correlation lengths for the different emission processes 

 

For the determination of the average spatial correlation length, it was necessary to 
subsample the emission data due to its high resolution.  For this, the 13 gridcells with the 
largest emissions for each emission category were selected along with all gridcells within the 
same latitude and longitude band.  With the selected gridcells, the spatial correlogram was 
estimated (spline.correlog function in R package ncf).  A Gaussian curve was then fitted to 
the correlogram (nls function in R package stats). The decay constant of this Gaussian curve 
was assumed to represent the correlation length for each process in the entire domain 
(Figure A.10).  
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Figure A.10 Spatial correlation between emission process for CO2 (left) and CO 
(middle) and between the emission processes for CO2 and the emission 
process from CO (right).   

 

A.5. Temporal correlations 

 

Emission processes may vary in time, e.g. residential heating increases with colder weather 
or road traffic emissions are higher within the weekdays.  This variability may allow from 
atmospheric inverse modelling system to partition between emission processes involved. 
EMPA has generated specific daily, weekly and monthly scaling factors (Figure A.11, Figure 
A.12 and Figure A.13 respectively) for the different source processes contained in the TNO-
GHGco inventory.  To obtain hourly values, the annual TNO GHGco emissions were scaled 
with the specific hourly factors provided by EMPA (average temporal profiles of the ten 
scenarios). It is important to point out that we have scaled the temporal scaling functions 
such that they sum up to one for the whole year. Furthermore, EMPA also provided an 
ensemble of ten estimates of the scaling functions for each process to obtain a measure of 
uncertainty.  The standard deviation of the temporal profiles from the ten scenarios can be 
added to the emission uncertainty.   
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Figure A.11 Daily variability of the temporal scaling factors for each source 
process.  The spread does not only represent the ensemble of ten estimates of 
the temporal variability provided by EMPA but also the overlapping weekly or 
monthly variability.   

 

 

Figure A.12 Weekly variability of the temporal scaling factors for each source 
process. 
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J: Waste K: Agri. livestock L: Agri. other

F4: Road transport (non−exhaust) G: Shipping H: Aviation I: OffRoad

E: Solvents F1: Road Transport (gasoline) F2: Road Transport (diesel) F3: Road Transport (LPG)

A: Public power B: Industry C: Other stationary combustion D: Fugitives
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Figure A.13 Monthly variability of the temporal scaling factors for each of the 
source process. 

 

A.5.1. Temporal correlations between emission processes 

 

The temporal correlations between the emission processes are important to understand 
which processes we can aggregate to reduce the degrees of freedom of the optimization. 
Expectedly, the four road-transportation sectors are temporally fully correlated with each 
other (R2 = 1, Figure A.14), but they were also highly correlated with waste burning and 
agriculture (R2 = 0.923) and solvents (R2 = 0.782).  These processes were characterized 
with higher emissions during the summer months, during the weekdays and during the day, 
with peak emissions in the morning and afternoon.  Moreover, (Stein et al., 2014) 
determined that increasing anthropogenic CO emissions during the winter (particularly from 
road transportation) improved the fit with observations in the Northern Hemisphere.  Another 
cluster was conformed by power generation, industry and stationary combustion (R2 values 
ranging from 0.476 to 0.676) with higher emissions during the winter, during weekdays, and 
during the day.  The processes with no or little seasonal, weekly or diurnal variability, off-
road transportation, shipping, aviation, and fugitive are not correlated with other processes.   
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Figure A.14 Temporal correlation matrix between the processes included in the 
TNO GHGco inventory. 

 

A.5.2. Temporal autocorrelations of the different emission processes 

 

Because we are interested in optimizing yearly budgets, we filtered out daily and weekly 
variability from the time series using a simple box filter with a cut-off frequency of 28 days 
repeating the time series three times to avoid edge effects.  We extracted the central time 
series and determined the autocorrelation function. We then fitted a Gaussian model to the 
autocorrelation function.  The decay rate constants of the Gaussian model ranged from 
11.86 to 34.98 days (Figure A.15).  The longer decay rates belong to processes where the 
temporal variability is mainly determined by the seasonal cycle, while the shorter decay rates 
belong to process with little or no monthly variability but remnants of the weekly and daily 
variability in the filtered time series.  
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Figure A.15 Autocorrelation function per emission process (black line) and 
fitted Gaussian functions (red line). T represents decay rate constant of the 
Gaussian model.   

 

B. Analysis of impact of CO photochemistry on regional CO and CO2 
mole fractions 

 
In this section, we analyse the necessity of including the photochemical generation of CO 
through the destruction of formaldehyde (HCHO) through the reaction HCHO+OH, and the 
destruction of CO through the reaction CO+OH, which results in the generation of CO2. 
From a budget perspective, the reaction CO+OH generates 4.16 Pg CO2 a-1 globally (Zheng 
et al., 2018).  Within our full European and Central European domains, the reaction CO+OH 
generates 0.2 Pg CO2 a-1 and 0.012 Pg CO2 a-1 respectively.  Putting these numbers into 
perspective (based on Le Quéré et al., 2018), the reaction CO+OH has a larger global 
contribution to atmospheric CO2 than cement emissions (1.5 Pg CO2 a-1) and it is larger than 
the global CO2 budget imbalance (1.9 Pg CO2 a-1).  Moreover, within the European Union, 
cement production emissions accounted for 0.1 Pg CO2 a-1 (Le Quéré et al., 2018), which is 
only half of the CO2 produced from the CO+OH reaction within our European domain.  
Furthermore, the reaction HCHO+OH generated globally 1284.58 Tg CO a-1 (Zheng et al., 
2018), and 54.6 and 3.40 Tg CO a-1 were generated within our European and Central 
European domains respectively.  The chemical production of CO from the HCHO+OH 
reaction is the largest single source term in the global CO budget (total source of ~2600 Tg 
CO a-1, Zheng et al., 2018).   
 
To analyse the atmospheric signals generated by CO photochemistry, we obtained the 
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masses of CO and CO2 generated from the reactions HCHO+OH and CO+OH respectively 
from the inverse modelling estimation in Zheng et al. (2018, inversion four).  The mass 
fluxes were aggregated to TM3 fine grid resolution (Heimann and Körner, 2013) and 
transported forward in time accounting for the first order destruction of CO through the 
reaction with OH.  For this, we used the OH climatological fields from Spivakovsky et al. 
(2000), which were distributed within the TRANSCOM-CH4 experiment (Patra et al., 2011), 
and the reaction from Liu and Sander (2015). We generated three scenarios, the first one 
included the fluxes from the reaction from the entire global, while the remaining only 
included the fluxes within our full European domain and our Central European domain.   
 
The forward simulations revealed that there was a smooth latitudinal gradient in CO2 and CO 
generation from photochemistry and these were more important towards the south of our 
European domain (Figure A.16 and Figure A.17).  When looking at the global CO2 and CO 
generation, there was a strong contribution of tracer coming from the south from the domain 
over southwestern Europe and northwestern Africa.  Furthermore, CO2 and CO generation 
over Europe peaks during the summer.  When considering the full European domain we 
observed that the highest mole fractions were found over the Eastern Mediterranean Sea, 
Italy, the Balkans, Greece and Turkey.  When considering the production within the Central 
European domain, the CO2 and CO mole fractions are highest over the Alps and Southern 

Germany.   

 

 

 

 
Figure A.16 Seasonal and yearly average CO2 mole fraction in the surface-
most TM3 model level which results from the reaction CO+OH globally (top 
row), within the full European domain (middle row) and within the Central 
European domain (bottom row).   
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Figure A.17 Seasonal and yearly average CO mole fraction in the surface-most 
TM3 model level which results from the reaction HCHO+OH globally (top row), 
within the full European domain (middle row) and within the Central European 
domain (bottom row).   

 
We sampled our four dimensional mole fraction fields at the locations of six sampling 

stations every three hours (Figure A.18 and Figure A.19) in order to look at evolution of the 

time series.  When considering the global photochemical generation of CO2 and CO, we 
observed a steep growth during the summer months, which continued at a lower rate into 
the winter.  This happened because, despite the reduction of CO2 and CO generation over 
Europe at the end of the summer, more of the tracer is being transported into the domain. At 
the end of the year mole fractions of ~0.5 ppm CO2 and ~250 ppb CO were observed.  In the 
case of CO2 and CO generation within our full European and Central European domains, we 
observed that both tracers peak in early September and then decay smoothly toward the 
winter.  For the full European domain, we observed peaked CO2 and CO mole fractions of 
~0.1 ppm and ~40 ppb respectively. For the Central European domain peak CO2 and CO 
mole fractions reached ~0.03 ppm and ~10 ppb.  The highest mole fractions peaks were 
observed at Bialystok, Poland (BIK, 53.23ºN, 23.02ºE) and Ochsenkopf, Germany (OXK, 
50.03ºN, 11.81ºE).   While typical the CO2 and CO mole fraction measurement precisions lie 
within 0.1 ppm and 2 ppb respectively, we must remember we are considering only the 
differences with respect to the boundary conditions.  Given the budget constraints, the 
emissions from anthropogenic sources likely produce similar magnitudes in mole fraction for 
these small domains.   
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Figure A.18 CO2 mole fraction signals resulting from the reaction CO+OH at six 
European stations (sorted by latitude).  Signals are shown for the global CO2 
generation as well as only within the European and Central European domains.   
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Figure A.19 CO mole fraction signals resulting from the reaction HCHO+OH at 
six European stations (sorted by latitude).  Signals are shown for the global 
CO generation as well as only within the European and Central European 
domains.   

In WRF initial and boundary conditions are determined from a global simulation. The 
photochemical source of CO2 and CO should be added to the global simulation that 
produces initial and boundary conditions.   
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