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Executive Summary 

Using new modelling and experimental results, this report synthesizes the CHE effort to 
assess the potential value of ground-based tracer measurements related to fossil fuel (FF) 
carbon dioxide (CO2) within an anthropogenic CO2 emissions Monitoring and Verification 
Support capacity (CO2MVS) and in addition to the future Copernicus CO2 monitoring (CO2M) 
satellite measurements. It attempts at defining a sampling strategy for these tracers. This 
report explores the practical implications of distinguishing between anthropogenic (meaning 
fossil fuel emissions, and also non-fossil waste burning, biofuels, etc.) vs. biogenic CO2 fluxes. 
It is specifically dedicated to the optimization of the space-time sampling of radiocarbon (14C 
in CO2), carbon monoxide (CO) and Atmospheric Potential Oxygen (APO). Its strategy relies 
on a series of numerical simulations prepared by CEA/LSCE, EMPA, MPG and NILU, with the 
help of TNO and UEA. They cover some of Europe with unprecedented detail, including for 
the spatial variability of the corresponding emissions per emission type. The report also 
exploits experimental results obtained during the first Covid-19 lockdown restrictions in the 
United Kingdom and analysed by UEA.  

CEA/LSCE analysed the uncertainty reduction brought by the CO2M satellite retrievals in 
combination with ground-based measurements of either 14CO2, CO2 or CO. These results 
bring contrasted conclusions regarding the potential of the combination between the satellite 
observation and surface networks. The satellite, as a stand-alone system, is seen to yield 
accurate estimates of the regional budgets of FF emissions in the morning of its days of 
overpass within its field of view and in favourable observation conditions, but it does not 
provide direct information on emissions during the afternoon or during the night, and hardly 
provides information on plants, cities and regions outside its field of view. The need for 
complementary sources of information to derive daily to annual budgets is thus critical. The 
results confirm that there is a large impact of the uncertainties in the Net Ecosystem Exchange 
(NEE) for the estimate of the FF emissions, but uncertainties in biofuel emissions do not 
appear to have a significant impact on the estimate of FF emissions with current biofuel 
emission levels. Relatively dense surface networks of CO2 and radiocarbon measurements 
close to highly emitting areas can help further decrease the uncertainty in the FF emissions 
estimates when combined with satellite observations, in contrast to isolated rural stations. This 
suggests that surface CO2 and/or 14CO2 measurements in support of the FF emission 
monitoring should be targeting FF emission areas directly rather than the surrounding 
biosphere. Both hourly CO2 and daily 14CO2 data can provide useful information on the FF 
emissions, the former catching the signature of these emissions at high frequency and the 
latter being much less sensitive to the uncertainties in the NEE. The results also indicate little 
information from sparse CO surface networks when combined with CO2 satellite and surface 
observations: the level of independence between the FF CO and FF CO2 emissions appears 
to be too high to reach finer precision in the FF CO2 estimates when adding CO data compared 
to those reached with CO2 data only, or even to those from state-of-the-art prior inventories. 
Finally, the results also show an overall decrease of the potential from each observation 
subsystem studied here rather than an amplification of these potentials when combining them 
into a large observation system with satellite and surface data. This is the natural consequence 
of the asymptotic convergence of the precision of inversions towards low values when adding 
observations. These various results support the deployment of very dense CO2/14CO2 surface 
networks to complement the satellite observation, with at least three sites per European 
administrative region. The large-scale deployment of such dense networks is probably 
unaffordable for the coming decade, but some regions are now equipped with many stations 
and in some locations, the complementarity between satellite and surface networks could thus 
be demonstrated. Frequent (up to daily) samplings of 14CO2 would be needed to ensure 14CO2 
data can bring information on FF emissions more precise than that of hourly CO2 stations. 

EMPA analysed near-surface emission signals of 14CO2, CO2 and CO. Long-range transport 
from neighbouring regions appeared to play a minor role in the measurement variability. This 
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implies controlling the fluxes at high resolution in the atmospheric inverse systems rather than 
in the form of aggregated fluxes in large regions. Radiocarbon measurements seem to be 
affected by nuclear power plant emissions only in their close proximity (within about 100 km) 
and only during the periods when some plant plume reaches the station: filtering out such 
periods should make it possible to minimize interferences from nuclear power point signals. In 
general, in winter, fossil fuel emissions strongly dominate 14CO2 variability (90% - 100%) over 
most of Europe. However, in summer their contribution drops to 70%-80% due to a non-
negligible contribution from biospheric fluxes. CO could be a particularly valuable tracer of 
fossil fuel emissions during summer, when the use of biofuels is reduced. However, this would 
not be true during periods of biomass or agricultural waste burning. Further, since variations 
in background CO concentrations are relatively large in summer, it would be necessary to 
separate large-scale variations in background CO from smaller-scale variations in fossil fuel 
CO. With a sufficiently dense measurement network, such a separation should be feasible. As 
shown in some previous studies (but in contrast to the CEA/LSCE conclusion), CO could also 
be useful as a high-frequency tracer that can be used to interpolate between typically weekly 
14C measurements at the same site. However, since CO has a large contribution from biofuels, 
this can only be successful if the signals from biofuels and fossil fuels are strongly correlated. 

MPG initially performed an analysis of the station footprints and showed the possibility to group 
the stations into regional clusters based on the correlations of their footprints. For a 
continental-wide observing system, at least one station per cluster is required. Furthermore, 
stations near urban centres were shown to be more sensitive to fossil fuel emissions and 
stations far from urban centres appeared to be more sensitive to biospheric emissions.  While 
it is clear that stations near cities are required to constrain the fossil fuel emissions, it is 
important to keep in mind that atmospheric inverse modelling is based on the gradients 
between stations.  Hence, the network should have stations upwind and downwind from the 
cities in order to capture gradients.  The different tracers studied were found complementary. 
In the determination of FF emissions from atmospheric measurements, APO had the best 
performance except for coastal stations, where oceanic fluxes can impede the accurate 
determination of FF emissions. Furthermore, although APO is a tracer that was design to be 
conservative with respect biospheric fluxes, MPG observed that biospheric fluxes have non-
negligible contributions to the regional APO signal because the oxidative ratios of 
photosynthesis and respiration deviate from the -1.1 ratio that defines the APO tracer.    δ14CO2 
observations, which are assumed to be the “gold-standard” to determine FF emissions 
because fossil fuels are void of 14C, have significant interference from 14CO2 emissions from 
gas-cooled nuclear power plants, biospheric fluxes and biomass burning emissions.  
Importantly, studies to determine FF emissions based on atmospheric measurements have 
often only considered fossil fuel emissions and biospheric fluxes (photosynthesis and 
respiration).  Yet, in this study MPG found significant interference from biomass burning 
emissions across the domain even though Western Europe is not a region with strong biomass 
burning emissions. The analysis of uncertainty of the inverse model results provided important 
information on how well the signals from different regions and processes were constrained.  
However, it was not capable of fully separating the contribution from fossil fuels and the 
contribution from the rest of the flux processes.   
 
NILU performed forward and backward simulations around the city of Oslo for CO2, CO, 14CO2 

and APO. While assessing anthropogenic emission fluxes of CO2, measurements in or close 
to the city centre were shown to provide a stronger constraint than rural sites. NILU tested the 
hypothesis that stations located within the highest emitting grid cells provide the most 
information. They found that when using a limited amount of measuring points, the accuracy 
of the retrieved fluxes has a weak correlation with the measurements located in the highest 
emitting cells. The alternative arrangement consists in measurements up and downwind from 
the highest emitting grid cells, such as in a ring distribution around the city centre, in agreement 
with previous examples described in the literature. In the configuration used here, the weak 
correlation with the city centre holds for calculations with the three different proxy CO2

ff (CO, 
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14C, and APO) tracers. However, in the idealised setting used here, there is sufficiently good 
knowledge of the background magnitude of the additional tracers and only perturbations 
thereof are studied. In a more realistic setting great care should be taken in properly assessing 
the background of all three species.  A similar statement applies to the factors used to convert 
each additional tracer and CO2

ff as these vary with season and location and likely have long 
term trends. 
 
UEA detected a reduction in fossil-fuel-derived CO2 mole fraction (ffCO2) in the atmosphere 
associated with the Covid-19 lockdown restrictions in the UK with a machine learning 
approach combining discrete APO samples and continuous atmospheric CO2 data. This novel 
approach circumvents the traditional pitfalls of the discrete sampling of APO, one of the best 
ffCO2 tracers, as illustrated here by the MPG simulations. 
 
All these works highlight the complex link between the CO2, CO, 14CO2, CO and APO 
atmospheric tracers on the one hand, and the CO2 fossil fuel emissions on the other hand. 
This complexity comes with modelling uncertainties that remain too large for a CO2 emissions 
Monitoring and Verification Support capacity to rely on a single tracer. The observation system 
has therefore to expand into a robust system of systems where redundancy among information 
sources compensates for modelling errors, and where complementarity among tracers 
compensates for the temporary blindness of some data sources during longer or shorter 
periods of time. 
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1 Introduction 

1.1 Background 

The initial CO2 report commissioned by the European Commission (Ciais et al., 2015) 
highlighted the need to complement the satellite observation system that is now called the 
Copernicus Anthropogenic Carbon Dioxide Monitoring (CO2M) constellation, with routine 
measurements of additional trace species of fossil fuel CO2 such as radiocarbon (14C in CO2) 
and carbon monoxide. The motivation behind this requirement of a ground-based component 
for the anthropogenic CO2 emissions Monitoring and Verification Support (CO2MVS) capacity 
(e.g., Janssens-Maenhout et al., 2020) was twofold: (i) separating fossil CO2 emissions from 
biogenic fluxes at regional scale, and (ii) independently evaluating the satellite-based emission 
estimates. For radiocarbon, Ciais et al. (2015) recommended the deployment of approximately 
50 sampling stations across the European continent, with higher density over regions with 
high emissions. We can now add Atmospheric Potential Oxygen (APO) to the list of relevant 
additional trace species of fossil fuel CO2 further to the work of Pickers (2016). 

In practice, different strategies can be envisaged to use these additional tracer measurements: 
the link between CO2 fossil emissions and these measurements can be established at the 
concentration level (using a constant or weakly-varying concentration ratio), or at the emission 
level (assuming some correlations between CO2 and tracer emission errors in the inventories, 
or assuming that the inventory emission ratio is correct or can be optimized from the 
measurements); additional tracers can also be combined together (for instance to interpolate 
infrequent radiocarbon samples in time, by assuming that their ratio is constant or weakly 
variable). In addition to its hypotheses, each method requires a clean background reference 
for the additional tracers, their non-fossil fuel sources need to be well quantified (e.g., 
emissions from nuclear power plants for radiocarbon measurements) and modelling 
uncertainty need to be fairly accounted for (e.g., for the vegetation isotopic signature in the 
case of radiocarbon measurements, or for emission ratios in the case of tracers co-emitted 
with CO2). 

This report explores the practical implications of distinguishing between anthropogenic 
(meaning fossil fuel emissions, and also non-fossil waste burning, biofuels, etc.) vs. biogenic 
CO2 fluxes. It is specifically dedicated to the optimization of the space-time sampling of 14CO2, 
CO and APO. Its strategy relies on a series of numerical simulations prepared by CEA/LSCE, 
EMPA, MPG and NILU, with the help of TNO and UEA. They cover some of Europe with 
unprecedented detail, including for the spatial variability of the corresponding emissions per 
emission type. This work follows and builds on CHE deliverables: 

- D4.1, “Current European in-situ atmospheric measurement capacity”, that summarized 
the current European in-situ atmospheric measurement capacity and typical sampling 
for CO2, CO, 14CO2 and APO),  

- D4.2, “Database of high-resolution scenarios of CO2 and CO emissions”, that provided 
high-resolution scenarios of CO2 and CO emissions associated with anthropogenic 
activities in Europe over a full year including associated uncertainty statistics and 
documentation, and  

- D4.3, “Attribution Problem Configurations”, that described the specific configurations 
implemented in the four modelling frameworks to study the attribution problem. 

This work also exploits Section 7 of CHE deliverable D1.3 “Reconciliation of top-down and 
bottom-up estimates of the carbon balance”, written by UEA about the potential benefits of 
including continuous fossil-fuel-derived CO2 mole fraction (ffCO2) tracers in Europe’s surface 
greenhouse gas network. 
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1.2 Scope of this deliverable 

1.2.1 Objectives of this deliverables 

This deliverable synthesizes the CHE effort to assess the potential value of additional ground-
based tracer measurements related to fossil fuel CO2 using new modelling and experimental 
results. It attempts at defining a sampling strategy for these tracers. The ensemble of 
contributions to this report allows for the representation of different views on the complexity of 
the attribution problem and different strategies to address it, so that a consensus can be 
reached on a factual basis. 

1.2.2 Work performed in this deliverable 

This deliverable is based on new experimental work performed in CHE WP1, and forward 
modelling and inverse modelling work performed in CHE WP4. 

1.2.3 Deviations and countermeasures 

This deliverable required much more complex modelling work than initially anticipated due to 
the high resolution of the simulations. The technical challenges related to the massive amount 
of computation needed for realistic model forward and inverse simulations have therefore 
slowed progress down and the study extended over four more months than planned.  
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2 Assessment from CEA/LSCE 

2.1 Introduction 

Within this project, CEA/LSCE has developed a high dimensional inversion framework 
designed for the co-assimilation of CO2 and additional tracers of fossil fuel (FF) emissions 
(CO, 14CO2 ground-based observations) and separately controlling emissions from large 
industrial plants, cities and regional budgets of more diffuse emissions. Such a high-resolution 
control vector avoids over-optimistic assessment of the capability of sparse observation 
systems, but involves a very large computational burden. First tests indicated a weak statistical 
constraint from the CO data. We therefore decided to separately consider the assimilation of 
CO and 14CO2 in order to optimize the computational effort for each tracer. For the “CO-CO2 
inversion configuration”, we prioritize the control of the different sectors of anthropogenic 
activity emitting both CO2 and CO (traffic, domestic and commercial heating etc.) for each 
target area but we focus on Belgium only. For the “14CO2-CO2 inversion configuration”, we do 
not need the sectoral resolution and can put the priority on the distinction between various 
regions around Belgium in the control vector. The two configurations are described in detail in 
the D3.4 CHE report “Inversion strategy based on OSSEs”. 

Our study considers retrievals of the CO2 column-average dry air mole fraction (XCO2) from 
individual tracks from a CO2M-like satellite in western Europe at 12:00 local solar time (LST). 
The inversions are conducted over 1-day windows from 00:00 to 24:00 (LST hereafter) on 
different days. Previous studies like Broquet et al. (2018) and Santaren et al. (2020) have 
shown that the direct information on CO2 FF emissions from XCO2 imagery with current 
measurement precision applies to periods of a few hours before the satellite overpass only. 
After a few hours, with air having been transported over typically 100 km, the signal from 
individual FF CO2 sources (plants, cities, regions) is much diffused and hardly detectable in 
XCO2 images. The ability to track large scale budgets of FF emissions over longer time periods 
likely relies on complementary observations of FF emission tracers which may help filter such 
a low signal from the signal from biogenic fluxes which is generally much larger over long 
distances. Ground-based networks could support such a tracking along with strengthening the 
constraint on the FF CO2 emission estimates during the few hours before the satellite 
overpass. By starting the inversion window 12 hours before the satellite overpass (at 12:00 in 
our experiments), and 10 hours before surface measurements can be properly assimilated, 
we account for such an extension of the window of direct constraint on the FF CO2 emission 
estimates from the satellite. The inversion window also ends more than six hours after the last 
ground-based measurement is assimilated. This time window is wider than the one chosen in 
Broquet et al (2018) or Santaren et al. (2020). 

However, by limiting the inversion window to a single day, we avoid analysing to which extent 
the temporal correlations of the uncertainties in the FF CO2 emission inventories allow for 
cross-referencing the information from data during different days. This assessment should rely 
on a strong knowledge on the structures of uncertainties in the FF emissions, which is still 
missing even though efforts have been conducted to improve it in CHE (WP3 and WP4) and 
other projects (Wang et al. 2020; Super et al. 2020). The 1-day inversion window also imposes 
the assimilation of daily samples of 14CO2. However, the assumption that 14CO2 could be 
sampled every day is currently difficult to envisage due to the corresponding measurement 
cost, and is thus optimistic (Wang 2016). 

Inversions with the CO-CO2 configuration are conducted for 2 different days: one in January 
(when the CO2 biogenic fluxes are very low), the other one in May (when the CO2 biogenic 
fluxes are relatively high). Inversions with the 14CO2-CO2 configuration are conducted for one 
day only (in July, when the biogenic fluxes are relatively high). This restriction is due to the 



 

CO2 HUMAN EMISSIONS 2021  
 

D4.4 Sampling Strategy for additional tracers  13 
 

computation cost associated with the preparation of each day of analytical inversion, and to 
the specific schedule of the project. 

2.2 Inversion configurations 

This section summarizes the description of the two inversion configurations detailed in the 
D3.4 CHE report “Inversion strategy based on OSSEs”. The inversion systems rely on: 

-    A regional atmospheric transport model for Western Europe which corresponds to 
a zoomed configuration of the CHIMERE mesoscale chemistry-transport model 
(Menut et al. 2013) with 2-km resolution in the centre (see Figure 2-1). Our 
simulation and inversion periods correspond to two days for the CO-CO2 
configuration, one in winter (January 5 2015), the other one in spring (May 11 
2015), and 1 day in summer (July 1 2015) for 14CO2-CO2 configuration. 

 

 

Figure 2-1: CO2 flux map (based on values from the TNO inventory and VPRM simulations for 
01/05/2015 at 12:00) over the atmospheric transport modelling grid. The red lines delimit the 
spatial resolution changes within the domain (from 2 km to 10 km and then 50 km from middle 
to edges of the domain). 

-    Analytical inversion frameworks (Wu et al., 2016) in which budgets of surface 
anthropogenic and natural fluxes or auxiliary parameters are controlled at plant, 
city or regional scales, and at hourly to daily resolution. In the following, the 
“control” parameters mainly correspond to flux budgets. 

-    Maps of all types of surface CO2, CO and 14CO2 fluxes (at temporal resolution up 
to 1 hour) provided within the project by TNO and CEA, whose plant or city to 
regional areas are re-scaled by the inversion using daily to hourly scaling factors 
to better fit the observations (Figures 2-2 and 2-3). 
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Figure 2-2: Administrative regions and coarser areas for which the biogenic flux budgets and the 
anthropogenic emission budget, are controlled in the 14CO2-CO2 inversion configuration. The red line 
delimits the 2 km × 2 km-resolution zoom of the CHIMERE transport model. 

 

Figure 2-3: Controlled areas in the CO-CO2 inversion configuration: nine Belgium administrative 
regions and the rest of the domain. 

The inversion tests correspond to experiments with synthetic data (such as in Observing 
System Simulation Experiments, OSSEs). We provide observation location, time and 
corresponding observation uncertainties to the system. However, our analysis relies on the 
Bayesian framework of the inversions, updating a prior information on the control variables, 
and on the direct computations of uncertainties in the estimates of the control variables by the 
analytical systems. Therefore, we do not have to generate values for the synthetic data, and 
to conduct Monte Carlo experiments to derive the statistics of uncertainties. We analyse the 
uncertainties in inverted (“posterior”) control parameters as a function of the observation 
system that is used for the inversion, and the corresponding uncertainty reduction, i.e., the 
relative difference between the posterior uncertainties and the prior uncertainties (expressed 
in terms of standard deviations) in the control variables: 

𝑈𝑅 = 1 −
𝜎𝑝𝑜𝑠𝑡

𝜎𝑝𝑟𝑖𝑜𝑟
 

The basics of the Bayesian inversion theoretical framework have been reminded in the D4.3 
CHE report “Attribution Problem Configurations”. The principles, theoretical framework and 
many parameters of the inversion configurations used here are very close to that used by 
Santaren et al. (2020) to study the potential of XCO2 imagery for the monitoring of CO2 
anthropogenic emissions at the regional, city and plant scale. However, in practice, since the 
inversions here handle the co-assimilation of surface CO, 14CO2 and CO2 data, and since they 
are based on input products from the CHE projects, they rely on different configurations of the 
transport model and the analytical inversion. Further detail on the inversion concepts and 
principles relevant for our experiments co-assimilating CO2 and 14CO2 data can be found in 
Wang (2016). 
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Note that the CO-CO2 configuration, as described in D3.4, does not assume perfect 
knowledge of the CO:CO2 emission ratio: an optimistic correlation of 0.8 is assigned between 
prior uncertainties in CO and CO2 anthropogenic FF or BF emissions in each sector of activity.  

An important input of the experiments here is the simulation of CO2M XCO2 samplings over 
the area of interest generated by IUP-UB in the framework of the ESA PMIF project (Wang et 
al., 2020, Lespinas et al. 2020). 

The following table lists the different experiments analysed afterwards. 

Table 2.1: List of OSSE Experiments 

Assimilated observations Europe: 14CO2-CO2 
inversion configuration on 
1st of July 2015 

Belgium: CO-CO2 inversion 
configuration on 5th  of January 
2015 or on 11th  of May 2015 

Satellite XCO2 EUR-Sat BE-Sat 

Surface CO2 EUR-CO2 BE-CO2 

Satellite XCO2 + Surface CO2 EUR-Sat-CO2 BE-Sat-CO2 

Surface 14CO2 EUR-14CO2 no 

Satellite XCO2 + Surface 14CO2 EUR-Sat-14CO2 no 

Satellite XCO2 + Surface CO2 and 
14CO2 

EUR-Sat-CO2-14CO2 no 

Surface CO no BE-CO 

Satellite XCO2 + Surface CO2 and 
CO 

no BE-Sat-CO2-CO 

Some sensitivity tests are also conducted by setting the prior uncertainties in NEE and BF 
fluxes to 0 (i.e. ignoring these fluxes) but we do not explicitly label them. 

2.3 Results 

2.3.1 Potential of the satellite observations as a standalone observation system 

This section describes results when assimilating the data from the satellite track only. It 
focuses on the results from the corresponding EUR-Sat inversion with the high dimensional 
14CO2-CO2 inversion configuration since this configuration provides a more extensive view of 
the results when using satellite data. 

The uncertainty reductions for the 24-hour regional budgets of FF emissions (regional budgets 
aggregates emissions from urban areas, point source and the rest of the regions hereafter) 
range from 0 to 34% in the main area of interest (Figure 2.4). They are nearly null for regions 
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outside the ground coverage of the satellite. The northeast direction of the wind on the day of 
analysis is nearly aligned with the satellite track, which tends to confirm that the observation 
footprint does not extend out of this coverage. However, the relatively large wind speeds over 
Western Germany (~5-6 ms-1 near the surface) allows for significant uncertainty reduction 
(~19%) in the region of Essen which is not in this coverage. The uncertainty reductions rise to 
a range from 0 to 66% for the regional morning budget (Figure 2-4 and Table 2-2 ), i.e. when 
focusing better on the temporal footprint of the satellite observation. Larger emission budgets 
generally lead to larger uncertainty reductions. However, for similar emission budgets, 
uncertainty reductions are significantly higher for emissions from urban areas and cities than 
for the other regional emissions since dense emissions areas generate atmospheric 
signatures that are easier to detect and filter (because of their larger amplitude) than more 
extended but more diffuse emissions areas (Santaren et al., 2020). 

Uncertainty reductions for the afternoon emissions entirely rely on the specification of 3-h 
temporal auto-correlation in the prior uncertainties in the emissions since these afternoon 
emissions are not directly seen by the satellite. Consequently, they are low for all types of 
sources. Figure 2-4 and Table 2-2 show uncertainty reductions for afternoon regional budgets 
ranging from 0 to 6%. 

Overall, the results show contrasted skills for the monitoring of the FF emissions. The lack of 
constraint outside the satellite coverage and during periods other than the morning confirms 
the need for complementary data to extrapolate in space and time the information from the 
satellite. The scores of uncertainty reductions result in various levels of precision on the 
emission estimates, with 6.5% to 30% posterior uncertainties in regional budgets for 24-h 
budgets in the main area of interest. 
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Figure 2-4: Uncertainty reduction in EUR-Sat inversion: for 24-h (a), morning (b) or afternoon 
(c) budgets of FF, BF, anth. emissions (FF+BF) and biogenic fluxes (NEE). Stripes indicate the 

satellite coverage. 
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EUR-Sat 

Uncertainty reductions on FF budget % 24-hour Morning Afternoon 

mean 10.9 17.6 2.8 

max 33.7 65.9 5.8 

Table 2-2: Statistics of the uncertainty reductions in EUR-Sat for regional 24-h, morning and 
afternoon FF emission budgets in the main area of interest (these budgets combine emissions 

from urban areas, large plants and the more diffuse regional sources). 

The UR for Net Ecosystem Exchange (NEE) and biofuel emissions (BF) is generally much 
smaller than for the FF emissions (Figure 2-4). The much weaker level of emissions related to 
BF combustion easily explains the lack of UR for this type of fluxes. However, the NEE is 
relatively large in July and the weaker UR for NEE can be explained by its diffuse nature 
compared to FF emissions. 

The problem of the attribution of inferred fluxes to FF emissions, NEE or BF emissions is 
investigated by conducting sensitivity tests in which the NEE or BF emissions are ignored 
(setting the prior uncertainty in NEE and/or BF emissions to 0). 

The EUR-Sat experiment with prior uncertainties in the NEE set to 0 (Figure 2-5 and Table 2-
3) shows significantly larger UR for the regional budgets of morning FF emissions with a range 
from 0 to 75% in the satellite coverage. However, this increase of the UR is moderate and still 
yields posterior uncertainties in 24-h regional budgets ranging from 6% to 30% in the satellite 
coverage. The differences in terms of spatial distribution between the NEE and the FF 
emissions explains the moderate impact of uncertainty in NEE in the UR for FF emissions. 

Setting prior uncertainties in BF emissions to 0 has a very weak impact on the UR for FF 
emissions (Figure 2-5) even though the spatial distribution of these two types of emissions are 
strongly correlated. This weak impact is directly attributed to the weak amplitude of BF 
emissions compared to FF emissions: the posterior uncertainties in FF emissions (6 to 30 % 
of the 24-h BF + FF emission budget) remain much larger than the uncertainty in BF emissions 
(0 to 7% of the 24-h BF + FF emission budget). 
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Figure 2-5: Uncertainty reduction in EUR-Sat inversion where the prior uncertainty in NEE 
or/and BF is set to zero, for 24-h budgets of FF emissions. Stripes indicate the satellite 

coverage. 
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EUR-Sat 

NEE set to 0 

Uncertainty reductions on FF budget % 24-h Morning Afternoon 

Main area of 

interest 

mean 13.7 22.4 3.0 

max 37.5 74.6 5.8 

Satellite 

coverage 

mean 17.2 27.5 3.2 

max 38.9 74.6 5.8 

Table 2-3: Statistics of the uncertainty reductions in EUR-Sat inversion where the prior 
uncertainty in NEE is set to zero, for regional 24-h, morning and afternoon FF emission 

budgets. In the main area of interest, these budgets combine emissions from urban areas, 
large plants and the more diffuse regional sources. 

2.3.2 Assessing the complementarity with the ground-based CO2 network 

This section evaluates the impact of (co-)assimilating data from the ground-based CO2 
network and the potential complementarities between the satellite and CO2 ground-based 
observations focusing on inversions with the high dimensional 14CO2-CO2 inversion 
configuration: we analyse experiments EUR-CO2 and EUR-Sat-CO2, and comparisons with 
the results from EUR-Sat. 

2.3.2.1 General results for the FF emissions 

EUR-CO2 reveals, again, the limited role of the horizontal atmospheric transport to propagate 
UR from regions where we have several measurement stations to the other ones. UR of more 
than 15% for 24-h budgets can be achieved in regions with 3 stations in the main area of 
interest (like Île-de-France 16.7%, and North Rhine-Westphalia 17.2%), or in regions with 
more stations outside this area (like southeast England and Baden-Württemberg, 31% which 
have 5 stations). However, UR can also be much lower in regions with many stations, e.g. for 
Lower-Saxony-and-Bremen which has 5 stations but a 6% UR. UR in regions with 1 or 2 
stations range between 1% and 10%. The UR are generally below 1% for other regions (Figure 
2-6 and Table 2-4). 

Of note is that the highest UR in the whole inversion domain (40% for 24-hour budgets and 
47% for morning budgets) correspond to large regions of the coarse resolution area of the 
transport model (not represented in Figure 2-6 ). This result is primarily driven by the optimistic 
extrapolation of information from the sites to the coarse model grid cells and further to the 
whole extent of the control areas in which they stand. This optimistic bias from the inversion 
configuration actually results in representation and aggregation errors when working with real 
data (Kaminski et al. 2001; Wang et al. 2017). It justifies and supports the use of the finer 
resolution control vector in the main area of interest, and the focus of our analysis on the 2 km 
resolution model subdomain. 

Only one region of the 2 km resolution model subdomain with 3 stations is located in the 
satellite coverage (the region North Rhine-Westphalia). When comparing the UR for the 24-h 
regional budgets of FF emissions from EUR-Sat-CO2 to that from EUR-Sat (Figure 2-4 and 
Table 2-2), it appears that the only significant changes are 
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ð  the increase of UR for this region by 4 percentage point (34 to 38%), i.e. less 
than the UR for this region in EUR-CO2 (17%) 

ð  the increase of UR for the regions outside the satellite coverage with more 
than 3 ground-based stations from nearly 0% to values that are nearly the 
same as in EUR-CO2.  

This indicates that the URs at 24-h scale in EUR-Sat-CO2 are smaller than the addition of URs 
in EUR-Sat and EUR-CO2 experiments. 
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Figure 2-6: Uncertainty reduction in EUR-CO2 (a) and EUR-Sat-CO2 (b) inversions: for 24-h 
budgets of FF, BF, anth (FF+BF) emissions and biogenic fluxes (NEE). Stripes indicate the 

satellite coverage. Green dots indicate the ground stations. 

  

    Uncertainty 

reductions on 

FF budget % 

24-h Morning Afternoon 

EUR-CO2 Main area of interest mean 2.5 2.9 1.9 

max 17.2 22.5 23.2 

EUR-Sat-CO2 Satellite coverage mean 16.5 24.0 6.1 

max 40.0 67.0 29.7 

Main area of interest mean 12.8 19.5 4.7 

max 37.8 67.0 25.5 

Table 2-4: Statistics of the uncertainty reductions in EUR-CO2 and EUR-Sat-CO2 inversions, for 
regional 24-hour, morning and afternoon FF emission budgets. In the main area of interest, 

these budgets combine emissions from urban areas, large plants and the more diffuse 
regional sources. 

The ground-based CO2 data constrain both afternoon and morning emission estimates, with 
UR of 6 to 38% and of 3 to 29% respectively for morning and afternoon regional budgets of 
FF emissions in the regions with 3 or more stations (Figure 2-7 8). The comparison between 
results for afternoon budgets of the FF emissions from EUR-Sat-CO2 and EUR-Sat shows, 
again, in EUR-Sat-CO2, an increased UR that is smaller than the sum of the URs obtained in 
EUR-Sat and EUR-CO2. Crossing the satellite data with the afternoon data from the ground 
network does not increase the ability to extrapolate the spatially widely spread information 
from these satellite data to the afternoon. 



 

CO2 HUMAN EMISSIONS 2021  
 

D4.4 Sampling Strategy for additional tracers  24 
 

 

 
 

Figure 2.7: Uncertainty reductions in EUR-Sat (a), EUR-CO2 (b) and EUR-Sat-CO2 (c) 
inversions: for morning (upper panel) and afternoon (lower panel) budgets of FF emission. 

Stripes indicate the satellite coverage. Green dots indicate the ground stations. 

 

2.3.2.2 Impact of NEE and BF emissions 

EUR-CO2 and the results of EUR-Sat-CO2 outside the coverage of the satellite show different 
situations regarding the comparison between UR for NEE and FF emissions (Figure 2-6 ). In 
regions with large cities and industrial plants (like the Paris area and Baden-Württemberg), 
the URs for NEE are smaller than that for FF as in EUR-Sat. However, in other regions, the 
signal at the surface stations is dominated by the signature of the natural fluxes and URs for 
NEE are larger than that for FF emissions. Due to the relatively weak signal from BF 
emissions, the UR for these emissions are much smaller than that for FF emissions (close to 
0%) in EUR-CO2. 

The impact of the attribution problem when using the surface CO2 network is quantified, here 
again, by conducting sensitivity tests in which the prior uncertainty in NEE and/or BF emissions 
is set to 0 (Figure 2-8 and Table 2-5). The surface network having many stations mostly 
sensitive to the NEE signal, it is expected to support the distinction between NEE and FF 
emissions in the inversion, even if the stations measure CO2 only. 

In inversions EUR-CO2, the UR for FF emissions in the regions with more than 3 stations are 
higher when ignoring the NEE and BF emissions, reaching a range between 12 and 43% for 
24-h budgets. The impact of ignoring these fluxes for these regions is higher than for regions 
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in the satellite coverage in EUR-Sat. However, the impact is negligible for the other regions 
for which the UR keeps on being very low. 

The comparison between results from EUR-Sat-CO2 and EUR-Sat when ignoring these fluxes 
hardly demonstrates a potential of the surface CO2 network to reduce the problem of attribution 
between FF emissions and other fluxes. Adding the CO2 network when ignoring the NEE and 
BF emissions yields a larger increase of the UR than when accounting for NEE and BF 
emissions. This is linked to the smaller UR associated with CO2 data when accounting for NEE 
and BF and to the lack of indirect feedback on the UR for FF emissions of the lowering of 
uncertainties in NEE when complementing the satellite data with CO2 data. 
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Figure 2-8: Uncertainty reduction in EUR-CO2 (a) and EUR-Sat-CO2 (b) inversions, where the 
prior uncertainty in NEE or/and BF is set to zero: for 24-h budgets of FF emissions. Stripes 

indicate the satellite coverage. Green dots indicate the ground stations. 
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NEE set to 0   Uncertainty reductions on 

FF budget % 

24-h Morning Afternoon 

EUR-CO2 

  

Main area of 

interest 

mean 3.3 4.0 2.3 

max 24.3 30.9 27.4 

EUR-Sat-

CO2 

  

Main area of 

interest 

mean 15.8 24.6 5.0 

max 43.0 76.2 27.4 

Table 2-5: Statistics of the uncertainty reductions in EUR-CO2 and EUR-Sat-CO2 inversions, 
where the prior uncertainty in NEE is set to zero, for regional 24-h, morning and afternoon FF 
emission budgets. In the main area of interest, these budgets combine emissions from urban 

areas, large plants and the more diffuse regional sources. 

 

2.3.3 Assessing the complementarity with the ground-based CO and 14CO2 
networks 

This section evaluates the impact of (co-)assimilating data from ground-based CO and 14CO2 
networks and the potential complementarities between the satellite and CO2, CO and/or 14CO2 
ground-based observations analysing both EUR (with conditions of the 1st of July 2015) and 
BE inversions (with conditions of the 5th of January 2015 and 11th of May 2015). In these 
cases, we analyze and compare experiments assimilating the CO or 14CO2 data only, and 
some couples of experiments with similar networks in which one experiment in a couple 
assimilates the CO or 14CO2 data while the other does not. 

2.3.3.1 Impact of surface CO network 

Results from BE-CO, the comparison between BE-CO and BE-CO2 (BE-CO not shown), and 
the comparison between BE-Sat-CO and BE-Sat or BE-Sat-CO2-CO and BE-Sat-CO reveal a 
very low UR provided by the surface CO network on the regional estimates of FF CO2 
emissions (Figure 2-9 and Table 2-6). This applies to tests in both winter and spring (only 
spring is shown here for illustration, note that the uncertainty on NEE drives the inversion 
assimilating CO2 data). The UR for afternoon and regional budgets of CO FF emissions can 
be high (e.g. 20% on Limburg budget, not shown) when using the surface CO network only. 
However, even though the strong correlation between prior uncertainties FF CO2 and FF CO 
should propagate corrections from FF CO emissions to FF CO2 emissions, this propagation is 
highly uncertain and does not significantly lower the uncertainty in FF CO2 emissions. These 
results imply a lack of support from the CO surface data to the “attribution problem”. 
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  Uncertainty 

reductions on 

FF budget % 

24-h Morning Afternoon 

BE-Sat-winter min 1.5 2.7 0.2 

max 11.6 20.9 2.2 

BE-Sat-spring min 0.7 1.1 0.1 

max 3.3 5.0 1.1 

BE-Sat-CO2-

winter 

min 1.6 2.7 0.3 

max 20.6 30.2 13.3 

BE-Sat-CO2-

spring 

min 0.7 1.2 0.1 

max 7.2 10.3 3.0 

BE-Sat-CO2-

CO-winter 

min 1.6 2.7 0.3 

max 20.7 30.3 13.5 

BE-Sat-CO2-

CO-spring 

min 0.7 1.2 0.1 

max 7.7 11.0 3.3 

 Table 2-6: Statistics of the uncertainty reductions in BE-Sat, BE-Sat-CO2 and BE-Sat-CO2-CO 
inversions, in winter and spring, for regional 24-hour, morning and afternoon CO2 FF emission 
budgets. 



 

CO2 HUMAN EMISSIONS 2021  
 

D4.4 Sampling Strategy for additional tracers  29 
 

 

 

Figure 2-9: Uncertainty reduction in BE-Sat (a), BE-Sat-CO2 (b) and BE-Sat-CO2-CO (c) 
inversions in Spring: for 24-h budgets of CO2 FF emissions and biogenic fluxes (NEE). Stripes 

indicate the satellite coverage. Green dots indicate the ground stations. 

2.3.3.2 Impact of the surface 14CO2 network 

The spatial distribution of the regional UR for 24-h, morning or afternoon budget when using 
surface 14CO2 data alone is similar to that when using CO2 surface data only. These URs are 
very low for regions with less than 2 stations (<5%) and range between 8 to 31% (morning 
budget) and 2 to 16% (afternoon budget) for regions with more than 3 sites (Figure 2-10 and 
Table 2-7). The URs are only slightly larger (and sometimes smaller) in EUR-14CO2 (Table 2-
7), i.e. when using the sampling of 14CO2 representative of 7-h averages of the concentrations, 
than in EUR-CO2, when using 7 hourly CO2 data at each site. The higher potential of 14CO2 
data than CO2 data to filter signal from FF emissions (if both were measured at the same 
temporal resolution) is balanced by the finer temporal resolution of the CO2 continuous 
measurements (since 14CO2 has to be sampled with a relatively low frequency), which helps 
catching the high frequency patterns of the signal from FF emissions. 

The result of URs when combining two networks smaller than the sum of URs when using 
each of these networks shown when comparing EUR-Sat, EUR-CO2 and EUR-Sat-CO2 also 
applies when adding the surface 14CO2 network i.e. i.e. when comparing e.g. EUR-Sat-14CO2 
to EUR-Sat and EUR-14CO2 or EUR-Sat-CO2-14CO2 to EUR-Sat-CO2 and EUR-14CO2. The 
combination of 14CO2 data with other types of data does not lead to further synergies of the 
advantages for each network: the spatial extent of the satellite observation, the temporal 
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coverage of the ground-based networks, the temporal resolution of the CO2 surface network, 
and the higher sensitivity to FF emissions of the 14CO2 network. 

The comparison of the experiments EUR-14CO2 with and without NEE and BF emissions 
shows a much smaller impact of these fluxes on the UR for FF emissions than in experiments 
EUR-CO2 or EUR-Sat, which confirms the much smaller sensitivity of 14CO2 data to NEE than 
CO2 data. An interesting consequence is that the increase of UR from EUR-Sat to EUR-Sat-
14CO2 or from EUR-Sat-CO2 to EUR-Sat-CO2-14CO2 is slightly larger when accounting for the 
NEE and the BF emissions than when ignoring them (Figure 2-11 and Table 2-8). In other 
words, the potential of the 14CO2 network to complement the satellite observation is higher 
when NEE is accounted for, while section 3.3.1 showed the opposite for the surface CO2 
network. This increase of the impact of the 14CO2 network when accounting for NEE is however 
relatively small, reaching its maximum in the region North Rhine-Westphalia, which has 3 
stations, and where the increase of UR for the 24-h regional budgets of FF emissions from 
EUR-Sat to EUR-Sat-14CO2 is of 3 percentage point (from 34 to 37%) when accounting for the 
NEE. In a general way, it is difficult to demonstrate a potential of the surface 14CO2 network to 
reduce the problem of attribution between FF emissions and other fluxes as for the surface 
CO2 network. 

 

 

Figure 2-10: Uncertainty reduction in EUR-Sat-14CO2 (a) and EUR-Sat-CO2-14CO2 (b) inversions: 
for 24-h budgets of FF emissions and biogenic fluxes (NEE). Stripes indicate the satellite 

coverage. Green dots indicate the ground stations. 
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    Uncertainty 

reductions on 

FF budget % 

24-h Morning Afternoon 

EUR- 14CO2 Main area of 

interest 

mean 2.4 2.6 1.2 

max 20.0 25.1 15.5 

EUR-Sat-14CO2 Main area of 

interest 

mean 12.4   

max 36.6   

EUR-Sat-CO2-
14CO2 

Main area of 

interest 

mean 13.3 20.0 5.0 

max 39.7 68.0 28.8 

satellite 

coverage 

mean 17.7 25.2 6.6 

max 48.0 68.0 33.6 

Table 2-7: Statistics of the uncertainty reductions in EUR-14CO2 and EUR-Sat-CO2-14CO2 
inversions, for regional 24-hour, morning and afternoon FF emission budgets. In the main area 

of interest, these budgets combine emissions from urban areas, large plants and the more 
diffuse regional sources. 
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Figure 2-11: Uncertainty reduction in EUR-Sat-14CO2 (a) and EUR-Sat-CO2-14CO2 (b) 
inversions, where the prior uncertainty in NEE or/and BF is set to zero: for 24-h budgets of FF 

emissions. Stripes indicate the satellite coverage. Green dots indicate the ground stations. 
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No NEE 

Main area of interest 

Uncertainty reductions on FF budget 

% 

24-

h 

Mornin

g 

Afternoon 

EUR- 14CO2 mean 2.4   

max 20.1   

EUR-Sat-14CO2 mean 15.1   

max 39.9   

EUR-Sat-CO2-14CO2 mean 16.2 25.0 5.3 

max 44.0 76.6 30.0 

Table 2-8: Statistics of the uncertainty reductions in EUR-Sat-14CO2 inversion where the prior 
uncertainty in NEE is set to zero, for regional 24-h, morning and afternoon FF emission 

budgets. In the main area of interest, these budgets combine emissions from urban areas, 
large plants and the more diffuse regional sources. 

2.4 Conclusions 

These results raise contrasted conclusions regarding the potential of the combination between 
the satellite observation and surface networks. 

The satellite observation, as a stand-alone system, can yield estimates of the regional budgets 
of FF emissions in the morning corresponding to its days of overpass with precisions down to 
~5% in its ground coverage. However, it does not provide direct information on emissions 
during the afternoon or during the night, and hardly provides information on plants, cities and 
regions outside its coverage. Furthermore, previous publications (Broquet et al., 2018, Wang 
et al., 2020, Lespinas et al. 2020, Kuhlman et al. 2020) have shown that even with a CO2M 
constellation of three or more satellites, the number of overpasses producing local images 
with low cloud cover is limited each year, which hampers the estimation of annual budgets or 
of anomalies in annual budgets (Chevallier et al., 2020). The need for complementary sources 
of information to derive daily to annual budgets is thus critical. 

The “attribution problem” in itself appears to be nearly secondary compared to that of the 
observation precision but our results confirm that there is a significant impact of the 
uncertainties in the NEE for the estimate of FF emissions. The uncertainties in BF do not 
appear to have a large impact on the estimate of FF emissions but this is related to the fact 
that the posterior uncertainties in FF emissions remain larger than the prior uncertainties in 
BF emissions i.e. to the relatively low level of BF emissions compared to the typical 
uncertainties in FF emissions at regional to local scales. If willing to reach very high precision 
estimates of the FF emissions with higher precision spaceborne instruments, and if the share 
of BF emissions increases in the future, the uncertainties in BF emissions would probably 
become a major problem due to the strong correlation between the spatial distributions of FF 
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and BF emissions. The problem of attribution to NEE fluxes would also increase if targeting 
very high precision estimates of the FF emissions in the future. 

Surface CO2/14CO2 networks can help further decrease the uncertainty in the FF emissions 
estimates when combined with satellite observations. In North Rhine-Westphalia, the addition 
of CO2 and 14CO2 stations decreases the posterior uncertainty in daily regional emissions from 
6.5% with the satellite alone to 5.9%. However, relatively dense networks close to highly 
emitting areas are needed to support such a decrease. The isolated rural stations do not 
provide a direct strong constraint for the estimate of the FF emissions, nor a significant indirect 
constraint for this estimate by solving for “the attribution problem”. Our results suggest that 
surface CO2 and/or 14CO2 measurements in support of the FF emission monitoring should be 
targeting FF emission areas directly rather than the surrounding NEE. Both hourly CO2 and 
daily 14CO2 data can provide useful information on the FF emissions, the former catching the 
signature of these emissions at high frequency and the latter being much less sensitive to the 
uncertainties in the NEE. 

Overall, the results illustrate a decrease of the potential from each observation subsystem 
rather than an amplification of these potentials when combining them into a large observation 
system with satellite and surface data. This is the natural consequence of the asymptotic 
convergence of the precision of inversions towards low values when adding observations. The 
attribution problem and that of the temporal extrapolation of the results are not such in our 
experiments that the synergy between the spatial extent of the satellite observation, the 
temporal coverage of the ground-based networks, the temporal resolution of the CO2 surface 
network, and the higher sensitivity to FF emissions of the 14CO2 network allows for a wide 
spatio-temporal coverage of the FF emissions at high resolution. There is a lack of new 
extrapolation of information from the combination of observation subsystems. 

The results also indicate the lack of potential in adding information from sparse CO surface 
networks to CO2 satellite and surface observations for the inversion of FF CO2 emissions, 
despite an optimistic assumption regarding the correlation between uncertainties in FF CO 
and FF CO2 emissions, and even though we ignored the natural sources of CO in our tests. 
The level of independence between the FF CO and FF CO2 emissions appears to be too high 
to reach finer precision in the FF CO2 estimates when adding CO data compared to those 
reached with CO2 data only, or even to those from state-of-the-art prior inventories. 

Therefore, these results support the deployment of very dense CO2/14CO2 surface networks 
to support the satellite observation, with at least 3 sites per European administrative regions. 
The large-scale deployment of such dense networks is probably unaffordable for the coming 
decade, but some regions are now equipped with many stations and in some locations, the 
complementarity between satellite and surface networks could thus be demonstrated. 
Frequent (up to daily) samplings of 14CO2 would be needed to ensure 14CO2 data can bring 
information on FF emissions more precise than that of hourly CO2 stations. 

Several warnings should be raised for the interpretation of these results and conclusions. Part 
of the lack of amplification of the impact from the different observation subsystems when 
combining them could be due to our set-up of the prior uncertainties in which we ignore spatial 
correlations and assume that the temporal correlations are relatively low. These assumptions 
are conservative and, we believe, safer, in a context where the correlations of uncertainties in 
current inventories are still poorly characterized and, since they are probably highly complex 
and far from isotropic, homogeneous, decreasing with distance or time. For instance, distant 
plants or cities can have more similar processes than close ones, and the emissions and their 
underlying processes can vary rapidly depending on the time, weather, or socio-economic 
drivers... Inversions assuming large temporal and spatial correlations in the prior uncertainties 
in inventories would indicate a stronger ability to extrapolate the information from atmospheric 
data but could be too optimistic. 
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Furthermore, our study tested surface networks roughly corresponding to the extension of a 
continental network like ICOS for the monitoring of regional FF emission budgets. The 
deployment of networks dedicated to specific cities with stations around and within the urban 
areas (Wu et al. 2016) would correspond to a different strategy and could result in different 
conclusions for the monitoring of city emissions. CO data might play a stronger role in such 
urban networks, and the complementarity between satellite and surface data might be better 
highlighted at city scale. However, the advantage of this strategy locally would be balanced 
by the lack of constraint on larger scale budget of the FF emissions and would favour the 
monitoring of large cities with some capabilities to equip local networks. 

Finally, our modelling of the errors from the atmospheric transport model is relatively simple 
here. This uncertainty is summarized into a Gaussian noise without any spatial and temporal 
correlations, as traditionally done in atmospheric inversions (Santaren et al., 2020). Complex 
modelling errors could actually shift or modify the patterns of the atmospheric signature of the 
FF emissions, which could increase the weight of the attribution problem, and thus the 
potential of the combination between satellite and surface data. However, very dense surface 
networks would be needed to support the identification and adjustment of transport errors. 
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3 Assessment from EMPA 

Empa performed simulations with the Eulerian atmospheric transport model COSMO-GHG, 

which is an extended version of the regional numerical weather prediction model COSMO for 
the simulation of greenhouse gases (GHGs). Empa simulated the tracers CO2, CO and 14C 

but not APO. In order to attribute variations in these compounds to different sources and 
regions, each compound was simulated as a superposition of multiple tagged tracers 

representing specific combinations of source process (e.g. fossil fuel versus biofuel, 

anthropogenic versus natural fluxes) and geographical region. To keep the total number of 
tracers in a computationally manageable range, only a coarse spatial division into large 

European subregions was possible. 

3.1 Simulation setup 

3.1.1 Domain 

Forward simulations were conducted for a domain covering Europe. Since COSMO-GHG 

operates on rotated-pole coordinates, the domain covers a slightly smaller area compared to 
the domain covered by MPG's simulations. The grid spacing over the whole domain 

approximates to 5.5 km. All grid parameters are listed in Table 3-1. 

 Table 3-1: Parameters of the COSMO-GHG European domain 

Parameter Longitudinal direction Latitudinal direction 

Rotated north pole coordinates -170.00° 43.00° 

Rotated start coordinates -17.00° -11.00° 

Rotated end coordinates 20.95° 19.45° 

Geographical start coordinates -26.58° 32.71° 

Geographical end coordinates 53.36° 66.45° 

Grid spacing 0.05° 0.05° 

Number of grid cells 760 610 

3.1.2 Tracers 

The trace compounds considered in the simulations of EMPA are CO2, 14CO2 and CO. The 
simulation of APO had to be discarded due to the limited resources in this project and the 
extensive data pre-processing for the other tracers. Europe was divided along country borders 
into six large regions representing Central, Northern, Western, Southern, South-eastern and 
Eastern European countries, as shown in Figure 3-1.  
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Figure 3-1: European regions for anthropogenic and biosphere tracers in COSMO-
GHG. 

For every tagged tracer a corresponding flux field was pre-processed and stored into hourly 
input files for the transport model. Table 3-2 lists all 75 tracers, including their underlying 
source processes and the number of tracers used for the regional split. No regional split was 
applied to the ocean tracers. For all three compounds an additional background tracer was 
simulated, which is constrained at the lateral boundaries by the output of a global model and 
transported passively throughout the model domain. For CO2, CO and 14C, not only a division 
into different anthropogenic source categories was applied, but also into contributions from 
biospheric fluxes due to photosynthetic uptake and respiration. 

Table 3-2: Processes for CO2, 
14CO2 and CO sources/sinks and their corresponding 

tracer names in COSMO-GHG. 

Origin Process Tracer 
names 

Region 
split 

Number of 
tracers 

Anthropogenic Fossil fuels[1] CO2_FF 
CO_FF 

Yes 6 
6 

Biofuels CO2_BF 
C14_BF 
CO_BF 

Yes 6 
6 
6 

Nuclear power plants C14_NUC Yes 6 

Biosphere GPP/NPP CO2_GPP 
C14_NPP 
C14_NPN 

Yes 6 
6 
6 
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Respiration CO2_RA 
C14_HR 

Yes 6 
6 

Ocean Sources (positive flux: 
"_P") and sinks (negative 
flux: "_N") 

CO2_O_P 
CO2_O_N 
CO_O_P 
CO_O_N 
C14_O_P 
C14_O_N 

No 
  

1 
1 
1 
1 
1 
1 

IC/BC Background concentration 
from outside of domain 

CO2_BG 
C14_BG 
CO_BG 

No 1 
1 
1 

SUM 75 

[1] No C14_FF tracer is needed since δ14CO2 = -1000 ‰ for those processes and the 
corresponding CO2_FF-tracers can be used for the computation. 

3.2 Results 

3.2.1 Time periods and meteorological situation  

COSMO-GHG simulations were performed for the months of January and July 2015. The first 
half of January 2015 was characterized by (south-)westerly flow for most parts of Europe, 
except for the British Isles and Scandinavia. Therefore, unusually mild temperatures and low 
wind speeds prevailed, especially after 8 January. On 16 and 17 January, a prominent 
interfering system of disturbances with heavy precipitation swept across central Europe, which 
led to variable weather until the end of the month. 

The first week of July 2015 was dominated by a strong heat wave over central and southern 
Europe, which was interrupted by a cold front around 8 July 2015 over central Europe. After 
this short interruption, the weather returned to stable high-pressure conditions resulting in 
above-average temperatures, low wind speeds, and only little precipitation over most of 
Europe, especially the western, southern and south-eastern parts.  

3.2.2 Concentration fields 

To illustrate the contributions of different source processes to the total signal of a given tracer, 
Figure 3-2 shows the monthly mean concentration fields of 14C at the lowest model level (i.e., 
approx. 10 m above ground). The total 14CO2 field is the sum over all contributing processes 
and over all regions, including the background 14CO2 field, which has a mean near-surface 
value of 20.2 (20.3) ppmv for January (July) 2015 over the whole simulation domain. The 
mean 14CO2 value is considerably higher in January (-1.7 ppmv) than in July (-0.7 ppmv). It is 
dominated by fossil fuel emissions showing highest (negative) concentrations in the most 
densely populated and industrialized regions of Europe. Biospheric activity has a net positive 
contribution and is more pronounced in July. The stripe in the north-eastern part of the domain 
is due to missing input data and should be ignored. Tracer fields from ocean fluxes are not 
shown because they are approximately one order of magnitude lower than their biospheric 
counterpart. 



 

CO2 HUMAN EMISSIONS 2021  
 

D4.4 Sampling Strategy for additional tracers  39 
 

As expected, the strongest signals (up to -20 ppm) in 14C are due to fossil fuel sources, which 
do not contain any radiocarbon. The signals are much larger in January than in July, mainly 
due to less effective vertical mixing in the winter months, but also due to larger emissions. 
Signals from biofuels are more than an order of magnitude smaller. In contrast to the 
anthropogenic 14C tracers, the signals due to biospheric fluxes are much larger in summer 
than winter. They reach levels of about 1 ppm in summer, and spread more evenly over larger 
regions compared to the anthropogenic signals. Signals from nuclear power plants are high 
close to the sources (several ppm), but rapidly decrease with distance. 

For both months, there were several time periods with very low horizontal pressure gradients 
over large parts of Europe. Accumulation of trace gases and, therefore, high concentration 
peaks can be expected in these regions. This effect is somewhat compensated by vertical 
mixing within the deeper convective boundary layer in July, as displayed in Figure 3-3. The 
figure presents total 14C for those days in January and July, where the highest daily mean 
concentration of 14CO2 (without background) was simulated. The fields show a three times 
higher daily mean concentration in January than in July 2015. 

a) Total 

 

b) Fossil fuel 
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c) Biofuel 

 

d) Nuclear power plants 

 

e) Natural 

 

Figure 3-2: Monthly mean near-surface concentrations of a) total  b) fossil fuel c) 
biofuel d) nuclear power plant and e) natural (biospheric and ocean) 14CO2 for January 

(left) and July (right) 2015. 
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Figure 3-3: Daily mean near-surface concentrations of 14CO2 on days with the highest 
averaged concentration for January (left) and July (right). 

 

3.2.3 Fossil fuel variability 

Whether a tracer like 14CO2 or CO can be regarded as a suitable fossil fuel tracer depends on 
how much of its variability is explained by fossil fuel emissions. To illustrate this for the 
example of 14CO2, Figure 3-4 shows maps of the temporal standard deviations (std) per grid 
cell of total 14CO2 in January and July 2015, and Figure 3-5 (top row) the corresponding maps 
for the fossil fuel component, i.e. for the tagged fossil fuel CO2 tracer. The variations for both 
tracers are approximately 2.5 to 3 times higher in January than in July. This again can be 
explained by stronger mixing within the PBL and dilution of trace gases in the summer months. 
Overall, the variabilities in the total and the fossil fuel tracer look very similar, suggesting that 
fossil fuel emissions are indeed the dominant factor contributing to atmospheric 14CO2 
variations over Europe.  

This can be investigated in a more quantitative way by computing the ratio between 
std(CO2,fossil) and std(14CO2,total) as shown in Figure 3-6. According to the COSMO-GHG 
simulations, the std-ratio for most terrestrial areas is close to 100% in January 2015. Distinctly 
lower values are located near nuclear power plants. The situation is more complex in July, 
where on top of the nuclear power plant signals the biospheric activity adds considerable 
variability. The domain-wide mean value of the std-ratio is 75% in this month (compared to 
92% in January), while most countries in central and eastern Europe still have a value above 
90%. For other regions, the contributions from fossil fuel emissions are much less prominent, 
since biospheric fluxes of 14CO2 significantly add to the variability.  

Figure 3-5 also shows the std of the fossil fuel CO component, and Figure 3-6 the ratio 
between std(COfossil) and std(COtotal). This ratio is high in densely populated and industrial 
areas, for example in western Germany and the Benelux countries. The fossil fuel contribution 
to variations in CO is much lower compared to 14CO2. In winter, the mean ratio over the whole 
domain is only 44%, and in summer it further drops to 37%. One reason is that biofuels 
(notably wood burning) are an important source of CO, particularly in winter. Another reason 
is that variations in background concentrations are larger, because CO has a relatively short 
lifetime of a few months. This likely explains the lower ratio in summer, where fossil fuels only 
dominate close to the population and industrial centers, but contribute well below 50% over a 
large proportion of the European continent. It should be noted that CO could still be a valuable 
tracer of fossil fuels, if the signals from biofuels and fossil fuels are well correlated. 
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The contribution from fossil fuels to the variability in total CO is comparable to that for CO2 in 
winter (see Figure 3-6), but is much larger in summer. In summer, CO2 variations are largely 
dominated by biospheric activity except close to urban centers.  

Figure 3-7 shows the monthly mean ratio between total CO and total CO2. The spatial patterns 
look very similar in both months. However, the amplitude is higher in January, because of the 
higher background concentrations due to the longer lifetime of CO in winter and due to 
stronger CO emissions. 

 

Figure 3-4: Near-surface standard deviations of total 14CO2 for January (left) and July 
(right) 2015. 
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Figure 3-5: Near-surface standard deviations of fossil fuel CO2 (middle), and CO 
(bottom) for January (left) and July (right) 2015. 

 

 

Figure 3-6: Near-surface standard deviation ratios between fossil fuel CO2 and total 
14CO2 (top), fossil fuel CO2, fossil fuel CO2 and total CO2 (middle), and fossil fuel CO 

and total CO (bottom) for January (left) and July (right) 2015. 
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Figure 3-7: Mean ratio between total CO and total CO2 for January (left) and July 
(right) 2015. 

 

3.2.4 Station network analysis 

An artificial station network was designed using a combination of the distribution of ICOS, 
NOAA and other GAW stations. If no GAW station was available, local meteorological or air 
quality sampling stations were taken. Additional urban stations were chosen to have a good 
coverage of the largest urban areas in Europe. This network design is based on the 
assumptions made in D4.3 (Section 5.3 Stations) and shown in Figure 3-8. All COSMO-GHG 
model output fields have been interpolated to all 237 stations. 

 

Figure 3-8: Station network proposal. Simulation data are extracted for all stations 
shown on the map, also considering the sampling height. 
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Two contrasting stations of this network are selected for the analysis shown here, one rural 
and one urban station, to illustrate how the tagged tracers help dividing variations in tracer 
concentrations measured in a specific location and environment into contributions from 
different source processes and regions. 

Melpitz, the first station, is located in a rural area near Leipzig in the eastern part of Germany. 
The main wind sector for Melpitz is southwest. Air masses reaching Melpitz from this direction 
transport a mixture of maritime and continentally influenced air masses after crossing large 
parts of Western Europe. The second most frequent wind sector is east, and is characterized 
by continental air masses influenced by long-range transport of anthropogenic emissions from 
Poland, Slovakia, the Czech Republic, Belarus and Ukraine. Note that only the last two 
countries are assigned to the area "Eastern Europe", the others belong to "Central Europe" 
(cf. Figure 3-1). 

The second station selected for the analysis is the city of Milan in the highly polluted Po Valley 
in Italy. High anthropogenic emissions in combination with a frequent occurrence of stable 
atmospheric conditions often lead to strong accumulation of anthropogenic tracers. The region 
around Milan is characterized by croplands, therefore a significant biospheric influence can 
be expected as well. 

Figure 3-9 shows time series of regionally separated, daily-averaged concentrations of fossil 
fuel CO2 (CO2_FF, where δFF = -1000 ‰) at the two sites in January and July 2015. For 
Melpitz, the fossil fuel signal mainly originates from central Europe with small contributions 
from western Europe (10-20%). The fossil fuel mole fractions are about three times higher in 
January compared to July (10 vs 3.5 ppm maximum). 

In Milan, the fossil fuel signal is almost entirely attributed to southern Europe. On most days, 
less than 10% of the tracer originates from longer distances such as central and western 
Europe. Compared to Melpitz, the magnitude of the fossil fuel signals differs even more 
between seasons. In winter, daily averaged values can exceed 40 ppm while summer values 
are less than 6 ppm, which corresponds to a ratio of approximately 7 to 8. 

Figure 3-10 - Figure 3-13 show time series of source-separated, daily-averaged 
concentrations of total 14CO2, CO2 and CO (without background fraction, respectively) at those 
sites. The signals in the city of Milan have an overall greater amplitude compared to those at 
the rural station Melpitz. In Milan, the relative fossil fuel contribution is more pronounced in all 
three tracers.  

In winter, emissions from fossil fuels strongly dominate the 14CO2 signal both in Melpitz and 
Milan, consistent with Figure 3-6. In July, heterotrophic respiration and biofuels add up to a 
non-negligible contribution, especially at Melpitz. On days with very strong biospheric activity, 
this can be up to 25% compared to the fossil fuel fraction. On other days during July, it is about 
10-15%.  

The CO2 signal is also dominated by fossil fuel emissions in winter, but biofuels and especially 
heterotrophic respiration contribute as well. In Milan these contributions are relatively small, 
in the range of 10-20%, but in Melpitz they occasionally add up to 50% of the total CO2 signal 
above background. In summer, the situation is very different. Even in Milan, the biospheric 
signals are significantly larger than the fossil fuel CO2 signal, though positive contributions 
from respiration and negative contributions from GPP tend to offset each other, strongly 
reducing the net biospheric CO2 signal and leaving the fossil fuel signal as the dominant 
component. Note, however, that this is only true for daily mean values. Respiration fluxes are 
significantly smaller than GPP in July, but because they occur at night in a shallow boundary 
layer, they contribute as much to the daily mean concentrations near the ground as GPP 
(known as the "rectifier effect"). For afternoon values, which are typically used in inversions, 
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the situation would likely be different with GPP being the dominant component. At Melpitz, the 
fossil fuel signals are only 10-30% of the gross biospheric signals, though GPP and respiration 
are largely compensating each other also at this station. Biofuels are much less important in 
summer than in winter since biofuels are primarily used for heating. 

Interestingly and in contrast to 14CO2 and CO2, the contribution to CO from fossil fuels is larger 
in summer than in winter, because biofuels are an important source of CO emissions but are 
less used in summer. This could make CO an attractive fossil fuel tracer in summer. This 
finding seems to be in conflict with Figure 3-6, which suggests that variations in the tagged 
fossil fuel CO tracer contribute on average only 37% to variations in total CO during summer. 
However, the analysis presented here does not include background CO concentrations, which 
were included in Figure 3-6. Variations in background concentrations appear to make a large 
contribution to the overall variability in CO during summer. Since these variations are likely 
spatially smooth, it might be possible to separate them from fossil fuel signals. 
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Figure 3-9: Time series of simulated region-separated fossil fuel CO2 concentrations 
for Melpitz (top) and Milan (bottom) for January and July 2015. 
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Figure 3-10: Time series of simulated source-separated 14CO2, CO2 and CO 
concentrations for Melpitz for January 2015. 
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Figure 3-11: Time series of simulated source-separated 14CO2, CO2 and CO 
concentrations for Melpitz for July 2015. 
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Figure 3-12: Time series of simulated source-separated (anthropogenic and natural) 
14CO2, CO2 and CO concentrations for Milan for January 2015. 
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Figure 3-13: Time series of simulated source-separated (anthropogenic and natural) 
14CO2, CO2 and CO concentrations for Milan for July 2015. 

 

3.3 Recommendations for the surface network 

Based on the analyses of the near-surface emission signals of 14CO2, CO2 and CO, we 

propose the following recommendations regarding the network design: 

1. Fossil fuel signals are much larger and contribute more prominently to the variability in 
14CO2, CO2 and CO during winter as compared to summer. Quantification of fossil fuel 
CO2 emissions is therefore easier during winter in principle, but in practice only ground-
based in-situ measurements are available continuously throughout the year, while 
satellite observations are more difficult during wintertime due to larger cloud coverage 
and due to larger solar zenith angles.  

2. The emission signal registered at a certain station is mostly dominated by the region it 
is located in. Long-range transport from neighbouring regions plays an inferior role. 
This suggests that a single station cannot be representative of one of the large regions 
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defined in our analysis (see Figure 1). Many more stations per region are required, but 
our analysis is too limited to provide a good number. 

3. Nuclear power plant emissions can have a significant effect on radiocarbon 
measurements. However, this only affects stations which are in close proximity 
(approx. 100 km) and only during periods when the plume reaches the station. Filtering 
out such periods should make it possible to minimize interferences from nuclear power 
point signals. 

4. Radiocarbon is an extremely valuable tracer of fossil fuel CO2 emissions. In winter, 
fossil fuel emissions strongly dominate 14CO2 variability (90% - 100%) over most of 
Europe. However, in summer their contribution drops to 70%-80% due to a non-
negligible contribution from biospheric fluxes.  

5. CO could be a particularly valuable tracer of fossil fuel emissions during summer, when 
the use of biofuels is reduced. However, this would not be true during periods of 
biomass or agricultural waste burning. Further, since variations in background CO 
concentrations are relatively large in summer, it would be necessary to separate large-
scale variations in background CO from smaller-scale variations in fossil fuel CO. With 
a sufficiently dense measurement network, such a separation should be feasible. 

6. As shown in previous studies, CO could also be useful as a high-frequency tracer, that 
can be used to apply a time interpolation between (weekly) 14C measurements. 
However, since CO has a large contribution from biofuels, this can only be successful 
if the signals from biofuels and fossil fuels are strongly correlated. Comparing the time 
series of biofuel and fossil fuel CO at Melpitz and Milan, the correlation appears to be 
quite high, but a more detailed analysis for whole Europe is required. 
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4 Assessment from MPG 

In this study, we used the Jena Carboscope inversion system, to assess our ability of a 

potential air sampling network to separate the contribution of fossil fuel emissions to the 

atmospheric CO2 mole fraction from the contribution of other processes, primarily biospheric 
fluxes, by using measurements of co-emitted species (14CO2, CO and APO) as a constraint.  

The setup is described in detail in D4.3.   

4.1 Geospatial network configuration 

The first step was to select the geospatial configuration of our hypothetical station network.  
The ICOS network was taken as base design.  Additionally, we selected a more rural or more 
urban configuration or a mixture of both.  The potential network configurations were also 
designed with varying station densities.  In D4.3, we identified 237 potential stations – divided 
into rural and urban categories.  The location of the rural stations was based on the ICOS 
network, from the Global Atmospheric Watch (GAW) and the National Oceanic and 
Atmospheric Administration (NOAA) global flask sampling network.  The locations of urban 
stations were based on the ICOS and GAW networks, as well as local air quality networks, 

meteorological stations or universities (examples in Figure 4‑1).   

 

 

Figure 4‑1 Examples of urban station locations from D4.3.  Images from Google Maps. 

We used the Stochastic Time-Inverted Lagrangian Transport (STILT) model (Lin et al., 2003, 
2004, Gerbig et al., 2003) to derive the instantaneous footprints – upwind influence regions 
on atmospheric measurement locations – of over 237 stations in hourly time steps from 2014-
12-31 00:00:00 to 2016-01-01 00:00:00.  The STILT model was driven by ECMWF and WRF 
meteorology.  Footprints were calculated with a resolution of 1/16˚ longitude and 1/24˚ latitude, 
which approximates 5 km over Central Europe.  Because of the size of the data, we also 
calculated the footprints at 0.25˚ degrees resolution to make them manageable.  Due to 
computational constraints, we reduced the domain to 15˚W-35˚E and 33˚N-73˚N (known as 
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STILT04 grid).  The footprint analysis in this section was performed at this coarser resolution.  
To perform our analyses, we aggregated the instantaneous footprints into an annual footprint 
for each station. 
 

A first hypothesis was that it should be possible to group the 237 stations based on their 
transport patterns.  For this we calculated the correlations between the yearly aggregated 

footprints (Figure 4‑2) and clustered them using hierarchical clustering analysis (R function 
hclust in package stats) using the Euclidean distances of the correlation matrix (R function 
as.dist in package stats).   We grouped our stations into 18 geographically distinct clusters 

(Figure 4‑3), which can be interpreted as stations which have a similar area of upwind 
influence.  

Figure 4‑2 Correlation matrix between the yearly aggregated footprints of the 237 stations 
simulated. 
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Figure 4‑3 Clusters extracted from the correlation matrix of the annual footprints. 

 

To choose stations from each cluster, we created a metric composed of three factors or 
rankings (normalized from 0 to 1): 

1.    how correlated is a station with other stations was represented as the sum in 
quadrature of the correlations along the correlation matrix.  Stations with footprints 
only correlated to themselves would get the highest rank.     

2.     the average annual footprint weighted by the area covered by the footprint 
3.    the average annual footprint weighted by the fossil fuel emission density within the 

footprint.   

 

The rankings correspond to their relative position in the graphs in Figures 4‑4, 4‑5, and 4‑6.  
The first ranking tells us how unique or how redundant are the signals measured at a particular 
station with respect to those measured at other stations.  In the second and third metrics, we 
aggregated the instantaneous footprints into an annual footprint (as already mentioned above) 
and calculated an average sensitivity value weighted either by the area covered by the 
footprint or by the fossil fuel emissions within the footprint.  As expected, we found that urban 
stations are much more sensitive to fossil fuel emissions.  In contrast, ICOS stations have a 
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low sensitivity to fossil fuel emissions particularly those located in remote areas of Scandinavia 
or Lampedusa, located in the Mediterranean Sea.  This is because the ICOS network was 
designed to constrain biospheric CO2 fluxes, which are the most uncertain component of the 
carbon cycle. To prevent interference, ICOS stations are located mostly far away from 
anthropogenic sources.  Furthermore, we find that footprints of mountain stations tend to have 
a larger footprint area.  However, the footprint magnitude weighted by the gridcell area may 
be skewed by the fact that grid cells have a larger area towards the equator.   

Figure 4‑4 Sums in quadrature along the rows of the correlation matrix.  Stations are ordered 
from least to greatest. 
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Figure 4‑5 Station average footprint magnitude weighted by the area of the footprint.  Stations 
are ordered by footprint magnitude.   

 

Figure 4‑6 Station average footprint magnitude weighted by fossil fuel emission density.  
Stations are ordered by footprint magnitude.   
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Figure 4‑7 Geographical distribution of average footprint magnitude weighted by area (left) and 
by fossil fuel emission density (right). 

   

We selected a set of stations from each cluster using the product of these rankings normalized 

as value from 0 to 1 (Figure 4‑8).  The selection was made with the following criteria: 

·  The base configuration is the ICOS network.  The ICOS network is included in all 
setups. 

· Sparse configuration: the highest-ranking station per cluster was added to the 
network. 

· Median configuration: all stations with a ranking above the median of each cluster 
were added to the network. 

·    High density configuration: includes all stations. 

Station networks were also classified as rural, urban or a mixture.  The resulting network 

configurations can be observed in Figure 4‑9 
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Figure 4‑8 Final ranking of stations 
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Figure 4‑9 Geographic distribution of potential network configurations 
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4.2 Forward assessment 

To date no dataset of simultaneous, high-frequency and high-precision CO2, δ14CO2, CO and 
APO which can be used to assess the ability of each tracer to estimate the fossil-fuel-derived 
CO2 mole fraction (ffCO2).  Furthermore, in the case of δ14CO2, measurements are taken only 
as weekly or biweekly samples because of their cost and complexity.  In the Jena Carboscope 
inversion system, the (hourly) footprints calculated with the STILT model serve as transport 
operator to link the fluxes to atmospheric measurements.  Therefore, we can use our emission 
inventories to produce a set of pseudo-observations at hourly time steps across our proposed 
network of 75 stations within the reduced domain[1] for all four tracers 

4.2.1 Signal strengths 

Because we are interested in the yearly budget, we first want to understand the overall 
magnitude of the signals of the different processes that we are considering in this study to 
determine which tracer is most sensitive to which process and at what relation with respect to 

the others and how this varies across the network (figures 4‑10, 4‑12 and 4‑13).  Here we use 
the term magnitude as the r.m.s. power of the tracer signal: 

𝑦𝑟𝑚𝑠 = √
∑𝑁
𝑛=1 𝑦𝑛2

𝑁
 

(Eq. 4‑1) 

 
where yn is the hourly mole fraction of the tracer and N is the number of hourly samples in the 
time series.   
 
For the Western European domain, fossil fuels emissions and biospheric fluxes produced the 
strongest CO2 mole fraction signals with average magnitude of 13.46 ± 28.9 and 8.31 ± 4.78 
ppm respectively.  However, the sensitivity to fossil fuels concentrated near urban centers 
while sensitivity to biospheric fluxes is more evenly spread but is slightly larger away from 
urban centers (e.g., the Alps regions).  Large biomass burning events may also create strong 
localized signals (average over the domain of 2.87 ± 8.88 ppm).  Anthropogenic biofuel 
combustion emissions produced only a minor signal (0.83 ± 0.58 ppm) and the influence of 
oceanic fluxes was negligible (0.04 ± 0.05 ppm). 
 
Biospheric fluxes are responsible for the largest 14CO2 mole fraction signals, which mirror the 
spatial patterns of CO2 biospheric fluxes. However, because of their weak isotopic leverage 
(the isotopic signature of the fluxes relatively similar to the isotopic signature of the 
atmosphere), the atmospheric signal δ14CO2 is only increased by an average of 0.51 ± 0.33 

‰ (Figure 4‑11).  In contrast, fossil fuel emissions, which are void of 14CO2 (δ14CO2 = -1000 
‰), have a strong isotopic signature leverage.  As a result, fossil fuel emissions cause the 
largest shift of the δ14CO2 signal (on average -11.01 ± 12.01 ‰).   However, while fossil fuel 
emissions are void of 14CO2, 14CO2 is emitted from gas-cooled nuclear power plants with no 
12CO2 counterpart.  This means that the decrease δ14CO2 signal caused by fossil fuel 
emissions is offset in regions downwind from areas with a high density of gas-cooled nuclear 
power plants, e.g., Benelux, Northern Germany or Southern England.  Interestingly, we find 
that strong biomass burning events may also generate large 14CO2 pulses because they 
liberate excess 14C from the biosphere which had been assimilated after the nuclear tests.  
Therefore, it is important to also take biomass burning into account when using δ14CO2 as a 
constraint of ffCO2.   

 

 
[1] Due to the structure of the Jena Carboscope and the computational resources available, we 
had to reduce the simulation domain from the whole European domain to 2˚W-16˚E, 47˚-55˚N 
in order to comply with the resolution requirements.   
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Surprisingly, even though Western Europe is not a region with strong biomass burning 
emissions (Europe as a whole only contributes with 0.2% of the global biomass burning 
emissions, van der Werf, et al., 2010), biomass burning dominates the CO signals across the 
Western European domain (171.41 ± 520.11 ppb).  This overshadows the targeted fossil fuel 
combustion emissions (41.79 ± 79.22 ppb).  Additionally, biofuel combustion emissions also 
produced non-negligible CO signals (10.44 ± 6.38 ppb).  In contrast, biospheric and oceanic 
fluxes resulted in relatively minor signals over Western Europe (1.12 ± 0.72 and 0.003 ± 0.004 
ppb respectively).    
 
While at global scale, APO primarily reflects ocean biogeochemical processes and 
atmospheric transport processes, over the Western European domain, the atmospheric APO 
signals were derived from fossil fuel emissions (5.82 ± 14.37 ppm).  Nevertheless, oceanic 
influences are not negligible near the coast (e.g. average signal magnitudes of 1.02, 0.84 and 
0.79 ppm at DZI, WMS and ZWE respectively).  Furthermore, although APO is a tracer that 
was designed to be conservative with respect biospheric fluxes, we observed that it has non-
negligible contributions to the regional signal (average over the domain of 0.41 ± 0.22 ppm) 
because the oxidative ratios of photosynthesis and respiration (here from Clay and Worrall, 
2015, see Tables 4-1 and 4-2 of D4.3) deviate from the -1.1 value that defines APO.  In 
contrast, the biofuel and biomass burning APO signals are small (0.01 ± 0.01 and 0.2 ± 0.62 
ppm respectively). 
 

 

Figure 4‑10 RMS amplitude of the tracer mole fraction at an hourly sampling site over the year 
2015.  
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Figure 4‑11 Average difference of the regional δ 14CO2 signal with respect to the background 
δ14CO2 signal.  The fossil fuel category includes both CO2 emissions fossil fuel combustion and 
14CO2 emissions from nuclear power plants. 

  

 
Figure 4‑12 Relative of the tracer signal of each process at each station to the magnitude of the 
total regional signal in average over the year 2015.     
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Figure 4‑13 Geographical distribution of the ratio of the magnitude of signal each process i with 

respect to the total regional signal (𝒇 = 𝒚𝒓𝒎𝒔,𝒊/𝒚𝒓𝒎𝒔,𝒕𝒐𝒕 ).  

 

4.2.2 Atmospheric fossil-fuel-derived CO2 mole fraction 

 

ffCO2 has been estimated using the ∆14CO2 signal (Levin and Karstens, 2007, Turnbull et al., 
2006, 2009, Vogel et al., 2013, 2017), CO (Gamnitzer et al., 2006, Turnbull et al., 2006, Vogel 
et al., 2017, Levin et al. 2020), and APO data (Pickers, 2016).  The ffCO2 is calculated as: 

𝑓𝑓𝐶𝑂2,𝛿14𝐶𝑂2 =
𝐶𝑂2,𝑂𝐵𝑆(𝛿 𝑂𝐵𝑆−𝛿𝑏𝑔)

𝛿𝑓𝑓−𝛿𝑏𝑔
-
𝐶𝑂2,𝑜𝑡ℎ𝑒𝑟(𝛿𝑜𝑡ℎ𝑒𝑟−𝛿𝑏𝑔)

𝛿𝑓𝑓−𝛿𝑏𝑔
 (Eq. 4‑2) 

𝑓𝑓𝐶𝑂2,𝐶𝑂 =
𝐶𝑂𝑂𝐵𝑆 − 𝐶𝑂𝑏𝑔

𝑅𝐶𝑂/𝐶𝑂2
 

(Eq. 4‑3) 

𝑓𝑓𝐶𝑂2,𝐴𝑃𝑂 =
𝐴𝑃𝑂𝑂𝐵𝑆 − 𝐴𝑃𝑂𝑏𝑔

𝑅𝐴𝑃𝑂/𝐶𝑂2
 

(Eq. 4‑4) 

where RCO/CO2 and RAPO/CO2 are the fossil fuel combustion CO-to-CO2 and APO-to-CO2 ratios 
respectively,  is the source signature of fossil fuel combustion (-1000 ‰) and bg refers to the 
background quantities (boundary conditions).  In this study, we transport ffCO2 as a separate 
tracer in one of our simulations.  This includes fossil fuel combustion as well as non-
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combustion emissions (e.g. cement production).  Because of the use of a Lagrangian model, 
we can directly link a footprint to a measurement and directly link the fossil fuel CO, APO and 
CO2 mole fraction to derive RCO/CO2, RAPO/CO2, ,  and .    Then, we directly tested how well the 
additional constraints of δ14CO2, CO and APO may be used to reproduce the ffCO2 tracer 
estimated by the STILT model (here referred to as ffCO2,STILT, Figure 4‑14).  
 

 
Figure 4‑14 ffCO2 as estimated by STILT vs ffCO2 estimated by the additional tracers. 

 

In Figure 4‑15, the scenarios with the APO constraint (ffCO2,APO) have the strongest correlation 
with ffCO2,STILT (R2 = 0.98 ± 0.64) followed by the scenarios with the δ14CO2 constraint 
(ffCO2,δ14CO2, R2 = 0.89 ± 0.39).  In contrast, the scenarios with the CO constraint show a much 
lower correlation (in average R2 = 0.66 ± 0.36) because of the strong influence of the biomass 
mass burning emissions. In general, the correlation between ffCO2,δ14CO2, ffCO2,CO and 
ffCO2,APO with ffCO2,STILT decreases when other sources are present.  For example, the 
correlation between ffCO2, δ14CO2 and ffCO2,STILT is lower at stations with a strong influence from 
nuclear power plants (e.g., R2 = 0.11 and 0.35 at ATH and HAM respectively) or biomass 
burning (e.g., R2 = 0.53 at PMS).  As well, the correlation between ffCO2,APO and ffCO2,STILT 
decreases at stations near the shore, where ocean signals are important (e.g. R2 = 0.79 and 
0.82 at DZI and ZWE respectively).   
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Figure 4‑15: Pearson correlation of the ffCO2 mole fraction calculated based on 14CO2, CO or 
APO and different reference ratios against the ffCO2 mole fraction estimated by the STILT model 
as an independent tracer. 

Looking at the mismatch between ffCO2,STILT and ffCO2,δ14CO2, ffCO2,CO and ffCO2,APO (Figure 

4‑16 and 4‑17), ffCO2,APO has the smallest error (in average an RMSE of 1.57 ± 1.50 ppm and 
a bias of 0.47 ± 0.29 ppm) followed by ffCO2,δ14CO2 (in average an RMSE of 8.94 ± 23.23 ppm 
and a bias of 1.93 ± 3.60 ppm).  In contrast, ffCO2,CO has very large errors (on average an 
RMSE of 43.13 ± 118.89 ppm and a bias of -4.79 ± 6.62 ppm) because of the strong influence 
of the biomass mass burning emissions. As in the case of the correlations, ffCO2,δ14CO2, 
ffCO2,CO and ffCO2,APO had larger errors with respect to ffCO2,STILT if there were strong signals 
from other processes.  For example, the error between ffCO2, δ14CO2 and ffCO2,STILT is much 
higher at stations with a strong influence from nuclear power plants (at ATH there is an RMSE 
of 19.02 ppm and a bias of 3.53 ppm) or biomass burning (at PMS there is an RMS of 176 
ppm and a bias of 29.75).  As well, the error between ffCO2,APO and ffCO2,STILT increases at 
stations near the shore, where ocean signals are important (at DZI there is a RMSE of 2.72 
ppm).   
 

 
Figure 4‑16 RMSE between ffCO2 mole fraction calculated based on δ14CO2, CO or APO and 
different reference ratios against the ffCO2 mole fraction estimated by the STILT model as an 
independent tracer. 

 

Figure 4‑17 Mean error (bias) between ffCO2 mole fraction calculated based on δ14CO2, CO or 
APO and different reference ratios against the ffCO2 mole fraction estimated by the STILT model 
as an independent tracer. 
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4.2.3 Rural-urban atmospheric gradients 

 

Given that 70% of fossil fuel CO2 emissions occur in cities and that the atmospheric inverse 
modelling technique exploits the spatial and temporal gradients between measurements to 
estimate spatiotemporal flux patterns, in this section, we explore the size of these atmospheric 
gradients at two locations, which had been analysed in previous studies, in more detail.   
 

4.2.3.1 Paris region 

 
To analyse the atmospheric gradients around the Paris urban area, we shall focus on the 
stations CDS and SAC which have been identified as lying often upwind/downwind from each 
other (Breon et al., 2015, Staufer et al., 2016 and Lian et al., 2020).  SAC is located in a semi-
urban area with a mixture of crops and forest in the periphery of Paris, while CDS is in the 
centre of the city.  Due to the larger contribution of anthropogenic emissions at CDS, the 
average magnitude of the fossil fuel signal increased from 13.88 ppm to 40.09 ppm (Figure 
4‑18), the δ14CO2 signal decreased from an average -12.10 to -25.87 ‰, the magnitude of the 
CO fossil fuel signal increased from 56.44 to 124.29 ppb and the APO fossil fuel signal 
decreased from an average of -6.50 to -19.55 ppm.  
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Figure 4‑18 Contribution of flux processes to regional signal sampled at stations TRN (Trainou, 
47.96˚N, 2.11˚E), SAC (Saclay, 48.72˚N, 2.14˚E) and CDS (Cité des Sciences et de l’Industrie, 
49.00˚N, 2.39˚E) of the different tracers.  The fossil fuel process includes 14CO2 emissions from 
nuclear power plants.  TRN is not directly upwind-downwind from Paris but represents more 
background conditions. 

Calculating the fossil fraction at the stations around Paris we find that ffCO2 increases from 

TRN to SAC to CDS similarly to the tagged tracer from STILT (figure 4‑19). The strongest 
correlation at all three stations was achieved when using the APO measurements (all R2 > 
0.98, figure 4‑15).  The ffCO2 obtained from the δ14CO2 measurements did not achieve such 
a strong correlation because of the interference of emissions from nuclear power plants, 
biosphere and biomass burning (on average 0.84, 5.23 and 3.85 x10-12 ppm 14CO2 
respectively). The ffCO2 obtained based on CO measurements only achieved a moderate 
correlation (R2 = 0.41).   
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Figure 4‑19 Smoothed yearly variations of ffCO2 observed at TRN, SAC and CDS as calculated 
by the STILT modelled (tagged tracer) or with the use of the δ14CO2, CO or APO signal (only 
median ratio shown).  

Looking at the hourly gradients between CDS and SAC (figure 4‑20), we found a higher CO2 
mole fraction (in average by 6.63 ± 43.38 ppm), a more negative of the δ14CO2 signal (in 
average -by 13.53 ± 60.45 ‰), a higher in CO mole fraction (in average by 35.13 ± 456.03 
ppb) and a more negative in the APO signal (in average by -3.37 ± 19.85 ppm). For CO, we 
observed a relatively more important contribution from biomass burning (in average 12.13 ± 
411.48 ppb).  Furthermore, although SAC is located near crops and forest, the contribution of 
the plant uptake is negligible during the daytime even during the growing season compared to 
fossil fuels (-0.35 ± 2.53 ppm in comparison to 1.15 ± 4.83 ppm respectively).  
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Figure 4‑20 Contribution of the different flux processes to the tracer gradient between CDS and 
SAC.  Error bars represent the interquartile range. 

 
We use the gradient between CDS and SAC, to evaluate the ffCO2 calculated using the 
additional tracers against the ffCO2 estimated as an independent tracer in the STILT model 

(Figure 4‑21 and Table 4‑1).  The ffCO2 gradient CDS and SAC determined by δ14CO2 had a 
strong correlation with ffCO2 gradient estimated by the STILT model (average R2 = 0.8064) 
and relatively low error (RMSE = 13.31 ppm).  Nevertheless, while δ14CO2 observations are 
considered the standard to determine ffCO2, ffCO2 derived from APO had the best 
performance correlating strongly with the ffCO2 estimated by STILT (R2 = 0.9924) and having 
a relatively low error (RMSE = 10.47 ppm).  Interestingly, ffCO2derived from δ14CO2 tends to 
have a positive bias (average of 2.14 ppm), while ffCO2 derived from APO tends to have a 
negative bias (average of -2.89 ppm).  Therefore, it is important to have accurate oxidative 
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ratios to avoid biases.  ffCO2 derived from CO has the worst performance with a low correlation 
(average R2 = 0.41) and high errors (RMSE = 44.01 ppm).  ffCO2 derived from CO 
measurements has strong deviations at the time of biomass burning events.  The ability to 
estimate ffCO2 is also strongly affected by meteorological conditions, with less error in case 
of a well-mixed boundary layer found during the afternoon particularly during the growing 
season.   
 

 

Figure 4‑21 ffCO2 daily afternoon (11:00 – 16:00) and night time (23:00 – 5:00) averages the 
difference between CDS-SAC as calculated by the different tracers in comparison to STILT 
tracer.   

 

Table 4‑1 Summary of metrics for the ffCO2 gradient between CDS-SAC 

Case Season Time of 
the day 

Correlation 

R2 

RMSE 

[ppm] 

Bias 

[ppm] 
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14CO2 Growing Afternoon 0.8086 2.35 0.97 

Growing Nighttime 0.8172 13.03 3.79 

Non-growing Afternoon 0.8791 6.65 2.02 

Non-growing Nighttime 0.7948 18.82 1.59 

Overall 0.8064 13.31 2.14 

CO Growing Afternoon 0.3333 17.72 1.67 

Growing Nighttime 0.5627 26.86 0.70 

Non-growing Afternoon 0.3702 32.47 2.21 

Non-growing Nighttime 0.3745 64.75 -4.06 

Overall 0.4149 44.01 -0.44 

APO Growing Afternoon 0.9875 1.84 -0.78 

Growing Nighttime 0.9962 11.28 -3.10 

Non-growing Afternoon 0.9954 6.21 -1.77 

Non-growing Nighttime 0.9911 13.98 -4.51 

Overall 0.9924 10.47 -2.89 

Summary Growing Afternoon 0.8704 7.31 0.62 

Growing Nighttime 0.9274 17.06 0.46 
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Non-growing Afternoon 0.9213 15.11 0.82 

Non-growing Nighttime 0.8839 32.52 -2.33 

 

4.2.3.2 Rotterdam region 

 

Super et al. (2017) tested the use CO2 and CO mole fraction continuous measurements in a 
simple network to constrain the fossil fuel emissions from the city of Rotterdam, Netherlands.  
This network consisted of an upwind station (Westmaas, WMS, 51.78˚N, 4.45˚E) and a 
downwind station (Zweth, ZWE, 51.96˚N, 4.39˚E). We expand here the analyses of Super et 
al. (2017) with our simulation to determine the signal strength and gradients between the 
stations.    
  
In contrast to Paris, the regional signal observed at WMS and ZWE is much smaller (regional 
signal magnitude of 4.41 and 4.54 ppm respectively, see figure 4‑22).  The regional CO2 signal 
is dominated by biosphere fluxes and anthropogenic emissions (average ratio of the 
magnitude of the process signal with respect to the total signal was 0.9 and 0.705 
respectively).  The additional tracers have significant interference from processes besides 
fossil fuel emissions and biospheric fluxes.  Due to the location, the 14CO2 signal had a non-
negligible contribution from nuclear power plant emissions (magnitudes of 0.48 and    ppm at 
WMS and ZWE respectively).  When looking at the CO signal, there are strong fossil and 
biofuel signals (5.26 and 10.20 ppb respectively) year-round but also strong intermittent 
biomass burning signals (magnitude of 9.76 ppb).  In the case of APO, there was a strong 
contribution from oceanic fluxes which more than offset the oxygen consumption from fossil 
fuel emissions during the summer.  Due to this interference, the ffCO2 derived from APO had 

unrealistic seasonal patterns (figure 4‑23).  
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Figure 4‑22 Contribution of flux processes to regional signal sampled at stations CBW (Cabauw, 
51.58˚N, 4.55˚E), ZWE (Zweth, 51.96˚N, 4.39˚E) and WMS (Westmaas, 51.78˚N, 4.45˚E) of the 
different tracers.  The fossil fuel process includes 14CO2emissions from nuclear power plants.   
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Figure 4‑23 Smoothed yearly variations of ffCO2 observed at CBW, WMS and ZWE as calculated 
by the STILT modelled (tagged tracer) or with the use of the δ14CO2, CO or APO signal.  

In contrast to CDS and SAC in Paris, ZWE and WMS alternated their role as upwind and 
downwind stations rather equally.  This means that the mean gradient was close to zero and 

the spread around this mean was relatively symmetric (Figure 4‑24).  When we observed the 

gradient in ffCO2 (Figure 4‑25), the size of the gradient estimated by STILT was of 0.06 ± 1.05 
and -0.07 ± 1.62 ppm in the growing and non-growing seasons respectively, which would be 
difficult to detect given the measurement and modelling uncertainty assumed in this study (0.1 
and 1 ppm respectively).  During the summer, there was a stronger oceanic APO signal at 
WMS primarily during the night-time (up to -0.08 ± 0.79 ppm).  This oceanic signal very clearly 
interfered with the estimation of ffCO2 and the correlation of the ffCO2,stilt with ffCO2,APO 

decreased from R2 = 0.8952 to 0.5357 between the afternoon and the night-time (Table 4‑2).   
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Figure 4‑24 Mean gradient between ZWE and WMS for the different tracers and processes. 
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Figure 4‑25 Afternoon (11-16 h, top) and night time (23-05 h, bottom) ffCO2 gradient between 
ZWE and WMS. 

 

Table 4‑2 Summary of metrics for the ffCO2 gradient between ZWE-WMS 

Case Season Time of the day Correlation 

R2 

RMSE 

[ppm] 

Bias 

[ppm] 

14CO2 Growing Afternoon 0.6758 0.31 0.02 

Growing Nighttime 0.5578 0.52 -0.02 
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Non-growing Afternoon 0.8737 0.38 -0.06 

Non-growing Nighttime 0.9320 0.44 0.01 

Overall 0.8527 0.43 -0.01 

CO Growing Afternoon 0.5890 0.58 -0.01 

Growing Nighttime 0.4916 1.18 0.09 

Non-growing Afternoon 0.6031 0.78 0.10 

Non-growing Nighttime 0.7019 1.09 0.06 

Overall 0.6265 0.98 0.07 

APO Growing Afternoon 0.8952 0.34 0.03 

Growing Nighttime 0.5357 1.64 -0.16 

Non-growing Afternoon 0.8957 0.40 -0.02 

Non-growing Nighttime 0.7349 1.13 0.12 

Overall 0.6659 1.09 0.01 

Summary Growing Afternoon 0.7538 0.41 0.02 

Growing Nighttime 0.5290 1.11 0.03 

Non-growing Afternoon 0.8228 0.52 0.01 

Non-growing Nighttime 0.8214 0.89 0.07 
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4.3 Inverse assessment 

4.3.1 Uncertainty reduction 

 
To evaluate the ability of our inverse model to constrain the fluxes in a particular location by 
the observations, we analysed the reduction of uncertainty between a priori and a posteriori 
fluxes for an inversion driven only by CO2 measurements, CO2 and 14CO2 measurements, CO2 
and CO measurements and CO2 and APO measurement.  Due to the fact that the a priori flux 
uncertainty as well as the measurement and model uncertainties are rather arbitrary, the a 
posteriori uncertainty only has a meaning in relation to the corresponding a priori uncertainties.  
The uncertainty reduction ∆σ is expressed as 

∆𝜎 = 1 −
𝜎𝑝𝑜𝑠𝑡

𝜎𝑝𝑟𝑖𝑜𝑟
 (Eq. 4‑5) 

where 𝜎𝑝𝑟𝑖𝑜𝑟 and 𝜎𝑝𝑜𝑠𝑡 are the a priori and a posteriori uncertainty respectively.  A value of 

zero indicates that a location is only determined by the a priori flux, while a value of one would 
correspond to a hypothetical complete constraining of the result by the data (Rödenbeck et al. 
2003).   
  
Here we calculated the integrated uncertainty reduction of hourly fluxes over the year 2015 for 
a set of regions described in D4.3.  Before proceeding, we must make it clear that due to 
computational resources and time much of the original plans described in D4.3 could not be 
realized.  Since the STILT model is Lagrangian, the computational requirements increase with 
the number of measurement points.  Therefore, we only performed simulations with the actual 
ICOS network distribution.  Furthermore, it was only possible to use a maximum of two tracers 
at a time.  Additionally, we were not able to optimize the measurements on a gridcell basis 
with a certain spatial correlation length to its neighbours but we were forced to optimize the 
fluxes on the scale of the uncertainty integration regions.  Finally, in contrast to the previous 
section, where we sampled the 14CO2 mole fraction at hourly time steps to understand the 
variability of the signals, in this section, only one 14CO2 sample per week is taken to simulate 
a flask measurement.  This is done at 14 h UTC for low altitude stations and 23 h UTC for high 
altitude mountain stations (when the station is above the planetary boundary layer).  The other 
tracers are sampled at hourly time steps.  To harmonize the contribution of hourly and weekly 
samples to the cost function, the Jena Carboscope de-weights the hourly samples, such that 
they have the same weight as a weekly sample but maintain the temporal information.    
  
The reduction of uncertainty analysis indicates that CO2 fluxes over the Western European 
domain are reasonably well constrained with overall reduction over 88% (Table 4‑3).  This is 
mainly driven by the other flux processes, while the uncertainty of fossil fuel emissions was 
reduced by over 84%.  At the level of the entire Western European domain the use of the 
additional constraints only increased the uncertainty reduction marginally.  
 

Table 4‑3 Overall uncertainty reduction for the entire Western European domain (obtained by a 
weighted sum of squares, where the weights were the fluxes). 

Constraints Fossil fuel 
emissions 

Other fluxes Overall reduction 

CO2 only 0.8427 0.8810 0.8808 
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CO2 +14CO2 0.8450 0.8970 0.8968 

CO2 +CO 0.8443 0.8813 0.8812 

CO2 +APO 0.8438 0.8812 0.8810 
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Figure 4‑26 Uncertainty reduction in the yearly fluxes per integration region for each scenario.  
Green dots represent measurement stations. 
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For fossil fuels, the uncertainty reduction is concentrated over the Rhine-Ruhr and the 
Frankfurt-Rhein-Main urban areas (92.5 and 79.2 % respectively), which are constrained by 
the nearby FZJ (Forschungszentrum Jülich, 50.91˚N, 6.41˚E) and KIT (Karlsruhe Institute of 

technology, 49.09˚N, 8.43˚E) stations respectively (Figures 4‑26 and 4‑28).  Medium 
uncertainty reduction is reached across Northern Germany up to Bohemia in the Czech 
Republic.  Strikingly for most urban areas, except those mentioned above and Leipzig (41% 
reduction), the uncertainty reduction of fossil fuel emissions is rather low, e.g., 12, 11, 9, 2.8, 
1, and 0.4 % for Stuttgart, the Flemish diamond, Berlin, Paris, Hamburg and Prague 
respectively.   
  
For the category “other fluxes'', the uncertainty reduction is higher across Central France 
(Centre and Grand-Est regions, 94.6 and 94.3 % respectively), Southern Germany (Baden 
Wurttemberg, Bavaria, 99.2 and 93 % respectively), Eastern Austria (91.4 %) up to Northern 
Germany (Lower Saxony and Schleswig-Holstein, with 86.4 and 84.2 % respectively) and 
Bohemia in the Czech Republic (85 %),  Strikingly, for the urban areas, even within the regions 
mentioned above, the uncertainty reduction was only 13.88 ± 0.13 % in average.  Peripheral 
regions also have lower uncertainty reduction because they are not constrained by gradients 
between upwind and downwind stations. 
  
The use of additional tracer only marginally increased the uncertainty reduction.  The strongest 
increase was by 14CO2 (over the whole domain only by 1.6 percentage points).  Strikingly, the 
uncertainty reduction increased more for the other fluxes than for the fossil fuel emissions with 

the 14CO2 constraint (increase of 1.6 in contrast to 0.23 percentage points, Figure 4‑27).  

However, looking back at Figures 4‑18 and 4‑22, we can observe that biospheric fluxes were 
a very dominant contributor to the 14CO2 mole fraction, which is what we actually are optimizing 
for because the Jena Carboscope is strictly linear.  Moreover, the 14CO2 also increased 
(although marginally) the uncertainty reduction for fossil over Southern Germany (increase of 
3.35 and 0.9 percentage points for Baden-Wurttemberg and Bavaria respectively), Bohemia 
(1.36 percentage points increase) and Lower Saxony (1.43 percentage points increase).  
Surprisingly, for fossil fuel emissions, the CO constraint provided the strongest gain in 
uncertainty reduction especially in the French part of the English Channel (13.81 percentage 
points), and Southern Germany (6.68 and 2.42 percentage points for Baden-Wurttemberg and 
Bavaria respectively).  In the case of APO, the added an average 0.9 percentage points to the 
uncertainty reduction of fossil fuel emissions in Eastern France, Benelux, and Western 
Germany (maximum of 2.9 and 2.1 percentage points in Baden-Wurttemberg and Haus-de-
France respectively). 
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Figure 4‑27 Difference in uncertainty reduction of the yearly fluxes with respect to the CO2 only 
scenario.  Red colours mean the uncertainty reduction increases.  Green dots represent the 
measurement stations. 
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Figure 4‑28 Uncertainty reduction of the yearly fluxes ordered from highest to lowest contrasting 
the effect of the additional constraints. 

4.3.2 Posterior correlations 

 

In contrast to the a posteriori uncertainty, which only have a meaning in relation to the a priori 
uncertainties, the a posteriori correlation coefficient between regional integrals of the flux fields 
(adjustable part only) have a direct interpretation.  Ideally, the correlation coefficients are close 
to zero because this means that the regions are constrained independently by the data. 
Positive correlations indicate that two regions depend on the same signals in the data, which 
means that the information distinguishing them is potentially missing. Negative correlation 
coefficients (anti-correlation) indicate a so-called dipole between two regions, which means 
that the sum of the signals from both regions is better constrained than the regions individually.  
In consequence, the uncertainty reduction would increase if it were calculated for two merged 
anti-correlated regions.   
  
The objective of this study is to determine if we are able to separate fossil fuel emissions from 
the other fluxes, mainly biospheric fluxes.  We found that, while the correlations between the 
fossil fuel emissions and the remaining fluxes in the integration regions are relatively weak, 
they are also clearly negative for most of the processes (average correlation coefficient of -
0.038 ± 0.067), which indicates that the sum of the signals from all processes is better 

constrained than the processes individually (Figure 4‑29). We also found that the correlation 
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coefficients between fossil fuel emissions and the remaining fluxes in each region do not 
change significantly with the use of additional tracers (average correlation coefficients for the 
different scenarios of -0.0394 ± 0.07, -0.0356 ± 0.0623, -0.0392 ± 0.0694, and -0.0386 ± 
0.0687 for the CO2 only, CO2+14CO2, CO2+CO and CO2+APO scenarios respectively).  The 
largest difference was found when using the 14CO2 constraint (Figure 4‑30), which clearly is 
able to better separate fluxes in Baden-Wurttemberg and Lower Saxony in Germany, Bohemia 
in the Czech Republic and Grand-Est in France (increases in the correlation coefficient of 
0.0655, 0.0256, 0.0389 and 0.0165 respectively).  The constraints of CO and APO only 
marginally change the correlations between the processes.  With CO, the correlation at 
Bourgogne-Franche-Comté in France becomes slightly more negative (decrease of -0.014).  
With APO, there are some improvements in the separation of fluxes in the Rhein-Ruhr and 
Frankfurt-Rhein-Main urban areas (increases of 0.0175 and 0.01303) but also a slightly more 
negative correlation coefficient in Northern Netherlands (decrease of -0.0073) which could be 
related to oceanic influences.   

Figure 4‑29 Correlation coefficient between fossil fuel emissions and other fluxes for each 
integration region. 
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Figure 4‑30 Difference correlation coefficient between fossil fuel emissions and other fluxes 
for each integration region in the scenarios with an additional constraint with respect to the 
CO2 only scenario.   

Finally, we added in quadrature the rows of the a posteriori correlation matrix for the different 

scenarios (Figure 4‑31) to determine which regions were better constrained by the data 
(regions with the smallest sums of squares). We found that the inversion has problems 
separating regions enclosed by larger regions, e.g., Prague and Bohemia (average R2 of 
0.9299 ± 0.0149 and -0.243 ± 0.02 for fossil fuel emissions and other fluxes respectively from 
Prague against fossil fuel emissions in Bohemia), Berlin and Brandenburg (average R2 of 
0.9601 ± 0.0018 and -0.0126 ± 0.0033 for fossil fuel emissions and other fluxes respectively 
from Berlin against fossil fuel emissions in Brandenburg), Lower Saxony and Bremen (average 
R2 of 0.854 ± 0.0043 for fossil fuels) and South East England and London (average R2 of 
0.6008 ± 0.0003 for fossil fuels).  Furthermore, the Baltic Sea regions (Danish, Swedish and 
German) cannot be easily separated by the inversion for the fossil fuel emissions (average R2 
of 0.2503 ± 0.2896). It should be pointed out that the 14CO2 constraint has a noticeable 
(although small) effect in the regions which cannot be separated from each other.  
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Interestingly, the correlations between the processes in the same regions are negative, which 
means that the sum of the signal from both processes is better constrained than for the 
processes individually, while the correlations between regions close to each other are positive, 
which indicates that the information distinguishing the regions is potentially missing.   
 

 

Figure 4‑31 Square sums along the columns of the posterior correlation matrix ordered from 
highest to lowest.  The regions with the highest sums are less well constrained. 

  

4.4 Concluding recommendations  

4.4.1 Station distribution 

  
Fossil fuel signals are concentrated around urban centres and decrease in strength with the 
distance from the urban centres.  Because the ICOS network was designed to constrain 
biospheric fluxes, most stations are located in rural or semi-rural settings and, in consequence, 
the ICOS network has a low sensitivity to fossil fuel emissions.  Furthermore, for historical 
reasons stations were established in a bottom-up way by national research or environmental 
institutions at locations which reflect their interests, available infrastructure, funding and 
accessibility.  Hence, in Europe, stations are concentrated in Central Europe with large gaps 
in Southern and Eastern Europe.    
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We recommend a new top-down approach using the tools demonstrated in this study, which 
included: analysis of footprints, analysis of modelled signals and analysis of uncertainty to find 
the most advantageous locations for stations. The network configuration shall follow these 
guidelines: 

1.    Close gaps.  The analysis of the footprints revealed that it is possible to group the 
stations into regional clusters based on the correlations of their footprints.  This is 
important because we can conclude that for a continental-wide observing system 
at least one station per region is required.   

2.   It is important to keep in mind that atmospheric inverse modelling is based on the 
gradients between stations.  In this study, uncertainty reduction was larger in the 
centre of the domain than at the margins.  Hence, the network should have stations 
upwind and downwind from the cities.  

3.  Separate the constraint on urban areas from the surrounding region.  In this study it 
was possible to get a good constraint on two urban areas (the Rhine-Ruhr and 
Frankfurt-Rhine-Main regions) because of the near location of station FZJ and KIT 
respectively.  However, other urban regions were not well constrained, despite the 
fact that they could have a nearby station, e.g. SAC near Paris.  The number and 
location of stations around a city must be investigated. 

4.4.2 Co-emitted tracers 

  
In the determination of ffCO2 from atmospheric measurements, APO had the best 
performance except for coastal stations, where oceanic fluxes can impede the accurate 
determination of ffCO2, e.g., during the summer when the ocean is degassing due to warming.  
Furthermore, although APO is a tracer that was design to be conservative with respect 
biospheric fluxes, we observed that biospheric fluxes have non-negligible contributions to the 
regional APO signal because the oxidative ratios of photosynthesis and respiration deviate 
from the -1.1 ratio that defines the APO tracer.    δ14CO2 observations, which are assumed to 
be the “gold-standard” to determine ffCO2 because fossil fuels are void of 14C, have significant 
interference from 14CO2 emissions from gas-cooled nuclear power plants, biospheric fluxes 
and biomass burning emissions.  Importantly, studies to determine ffCO2 based on 
atmospheric measurements have often only considered fossil fuel emissions and biospheric 
fluxes (photosynthesis and respiration).  Yet, in this study we found significant interference 
from biomass burning emissions across the domain even though Western Europe is not a 
region with strong biomass burning emissions (Europe as a whole only contributes with 0.2% 
of the global biomass burning emissions, van der Werf, et al., 2010).   
  
We extend the following recommendations: 

1.     APO is the best tracer to estimate ffCO2 from atmospheric measurements except for 
locations with strong ocean influence.  

2.     The effect of processes beyond fossil fuel combustion and biospheric fluxes, which are 
often neglected, should be taken in consideration, at least biomass burning.  
Additionally, at least, the effects of nuclear power plants emissions, ocean fluxes and 
biofuels should be considered for 14CO2, APO and CO respectively.   

  
Wrong 14CO2/CO2, CO/CO2 or APO/CO2 ratios can introduce significant errors to the 
estimation of ffCO2.  In a modelling framework, the accurate CO/CO2 or APO/CO2 ratios 
depend on the accuracy of the inventory and the accuracy of transport.  We extend the 
following recommendations:  

3.     Keep developing and refining emission inventories of co-emitted species, mainly:  
3.1.  The dynamic modelling of changes in the CO/CO2 or APO/CO2 ratios given by 

changes in fuel proportions or combustion efficiency, e.g., automobile engines 
have less combustion efficiency during cold-starts in the winter.   
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3.2.  The O2/CO2 ratios in the anthropogenic emission inventories use the assumption 
of full combustion (all organic carbon is transformed to CO2).  However, co-
emitted species such as CO and NOx modify the amount of O2 consumed.  The 
development of stoichiometrically-correct inventories may reduce errors in the 
ffCO2.   

3.3.  In the case of APO, it would be important to expand information on oxidative 
ratios of biospheric fluxes, e.g., Clay and Worral (2015), and how much they 
actually deviate from the canonical value of -1.1.  Is the canonical O2/CO2 ratio 
of -1.1 really representative of global biospheric fluxes?  

3.4.  Further development of 14CO2 inventories and models is required to determine 
the biospheric signals and 14C content of vegetation, which is released through 
respiration and burning.  14C content in annual crops can also be used to 
constrain atmospheric ffCO2, e.g., Bozhinova et al. (2016).   

3.5.  Emissions are derived from a relatively simple model linking electricity generation 
at a particular nuclear power plant to its annual 14CO2 emissions.  Further refining, 
e.g., other factor driving emissions, and time-varying activity data of the power 
plants, e.g., times taken offline, is required.   

4.     Make accurate footprint calculations easily available for atmospheric measurement 
groups, e.g., a website where measurement location and time is provided and the user 
obtains a footprint and mole fraction.   

 

The analysis of uncertainty of the inverse model results provided important information on how 
well the signals from different regions and processes were constrained.  However, it was not 
capable of fully separating the contribution from fossil fuels and the contribution from the rest 
of the flux processes.  An interesting fact to consider, is that in the inversion the constraint 
improves more when there are emissions and not when they are missing, e.g., 14CO2 improves 
mainly the uncertainty reduction of the other flux processes (mainly biospheric), while CO and 
APO improve the uncertainty reduction of fossil fuel emissions. We provide the following 
recommendation: 

5.     The analysis of inversions using CO2, 14CO2, CO and APO should be expanded 
considering the following: 
5.1.  Include different network configuration, e.g., more urban, more rural or mixed, 

and more or less. 
5.2.  In D4.3, we set particular values for the measurement and modelling uncertainty 

of the measurements.  While the measurement uncertainty is typically set by data 
providers, the model uncertainty is rather arbitrary.  The proportion of the model 
uncertainty to the measurement values is different for each tracer.  This may 
explain the fact that CO was better to constrain the fossil fuel emissions than 
APO.  To solve this issue, a characterization of the modelling error for all tracers 
is required, e.g., by the analysis of inversions with pseudo-data or by the spread 
of the modelled mole fractions in different models using the same fluxes.   

5.3.  Due to the fact that 14CO2 improves the uncertainty reduction of the other flux 
processes (mainly biospheric), while CO and APO improve the uncertainty 
reduction of fossil fuel emissions, we recommend further experiments with three 
tracers to determine if these tracers can be used complementarily. 

4.4.3 Other recommendations 

  
1.  The growing amount of data and increasing resolution required for emission 

inventories has caused very high demands on the computational cost of running 
simulations or even to ingest the data into the model.  We recommend to invest in 
expanding the computational capacity of the community and at the same time 
improving and optimizing the models.  
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5 Assessment from NILU 

NILU performed forward and backward simulations with the Lagrangian particle 
dispersion model FLEXPART for winter and summer 2015. Synthetic in situ and remote 
(XCO2) measurements were simulated and used in CO2 flux assessment OSSEs. The species 
simulated were CO2 (fossil fuel, biofuel, biogenic and background), CO (fossil and biofuel), 
14CO2 and APO. CO2 background fields were provided by FLEXPART-CTM. Fluxes for fossil 
fuel and biofuel CO2 and CO were provided by TNO. Biogenic CO2 was simulated using LPJ-
GUESS NEE. 14CO2 considers anthropogenic emissions from nuclear facilities. Except for the 
14CO2 from nuclear facilities, simulations were performed in two nested domains centered 
around the Oslo fjord area. Synthetic in situ measurements were simulated and used in CO2 

flux assessment OSSEs. 

 

5.1 Simulations setup 

5.1.1 Models 

The simulations were performed with different versions of the Lagrangian particle dispersion 
model FLEXPART (Pisso et al. 2019b), representing atmospheric transport by means of 
Lagrangian trajectories of a large number of particles in the atmosphere. Forward calculations 
were performed with both the standard (with ECMWF winds) and WRF (Brioude et al., 2013) 
versions. Backward calculations for the background were performed with the standard version 
coupled with FLEXPART-CTM (Groot Zwaaftink et al., 2018).   

5.1.2 Domains 

For local simulations, two domains containing the Oslo fjord area were used: [8.5ºE 
12.5ºE 58.8ºN 61.2ºN] at 0.05 degrees resolution and [10.36ºE 10.94ºE 59.74ºN 60.02ºN] at 
0.01º resolution (0.5 km). For the 14CO2 simulations, a European domain [10ºW 40ºE 35ºN 
70ºN] at 1º and nested 0.5º resolution was used instead only in forward mode to estimate the 
influence from nuclear facilities. 

5.1.3 Meteorology 

For ECMWF runs nested fields were used. The mother domain uses global 1º × 1º  
fields at full levels and the nest 0.1º × 0.1º fields in the domain [8.5ºE 12.5ºE 58.8ºN 61.2ºN]  
with the lowest 39 eta levels.       

5.1.4 Emission fluxes and background mixing ratios 

5.1.4.1 CO2 emissions 

The input fluxes were obtained from TNO. Alternative fossil fuel simulations were 
performed with ODIAC (Oda et al., 2018) and with the NILU-URGE Anthropogenic CO2 
emission inventory for Oslo (Pisso and Lopez Aparicio, in preparation). The anthropogenic 
CO2 fields that were used together with other tracers (same grid as for CO and O2) were 
calculated with emissions produced by TNO for the CHE project (D4.2, mid resolution fluxes ; 
note that the TNO mid-resolution fluxes include Oslo, but not the TNO high-resolution fluxes). 
The data set includes CO and O2 in the same grid as for CO2. Both fossil fuel and biofuels 
were simulated. All 15 GNFR sectors from TNO files were added together in order to provide 
a single emission source per gridcell. Point sources were also included in the integrated 
gridded emissions. Biogenic emissions were from LPJ-GUESS NEE. 
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5.1.4.2 CO emissions 

The anthropogenic CO fields were produced by TNO for the CHE project (D4.2). Both 
fossil fuel and biofuels were simulated. The background value was fixed at 80 ppbv for most 
OSSEs.    

5.1.4.3 14CO2 emissions  

 

Fossil fuel emissions are devoid of 14CO2. Background and biogenic emissions are 
assumed to have a Δ14C of 45 per mil which is about the background value measured at the 
site of Jungfraujoch (Bozhinova et al., 2014; Levin et al. 2010).  Anthropogenic emissions from 
the nuclear industry were provided by LSCE. We used continuous releases at a constant 
yearly rate (e.g. the largest source from the La Hague processing plant resulted in emissions 
of 0.0994 kg/yr ~ 16.4 TBq/yr). This yielded an influence in Southern Norway of the order of 
~10-12 ppmv in agreement with Bozhinova et al., (2014). The Δ14C values simulated in Oslo 
during e.g. winter 2015 ranged between 8 and 47 per mil. 

5.1.4.4 APO emissions 

The O2 consumption fields from TNO (calculated according to the fossil fuel CO2) were 
used in order to simulate the contribution to APO from fossil fuel and biofuel combustion to 
APO. The definition of APO was used in order to simulate the contribution from biogenic 
activity. Reference values of O2 and N2 in all cases were those of a standard atmosphere. The 
contribution from oceanic fluxes is not simulated but introduced as a perturbation on the mean 
state for sensitivity calculations. Although a more comprehensive modelling framework may 
be necessary to establish comparisons with actual measurements, a simplified setting is 
deemed appropriate for the OSSEs presented in this assessment.   

5.2 Tracer simulations 

5.2.1 FLEXPART runs 

 The Lagrangian model was run with 3-hourly releases each release containing 5×105 

and 8×104 particles for CO2
ff
 and CO2

bio, with a maximum total number of 3.5 ×108 particles 
per simulation. 

 

Table 1: FLEXPART simulations 

Name Description Settings 
201501 Jan 2015 Integrated releases  

201502 Feb 2015 Integrated releases  

201507 July 2015 Integrated releases  

201501 WRF Jan 2015 Integrated releases  

BKG Background from full 
columns 

Oslo domains. Coupled with 
FLEXPART-CTM 

14C LSCE emissions Europe domain 

fwd_TNO TNO emissions Oslo domains 

fwd_3d NILU emissions Oslo domains 

 

5.2.2 Simulated tracer fields and synthetic in-situ observations 

Spatio temporal distributions of tracer fields were calculated using a combination of 
forward and backward trajectory calculations. For the simulated contribution of the available 
emission inventories (both natural and anthropogenic) forward calculations were used. Unit 
emissions were simulated from releases representing all available sources. Separated 
calculations were performed for both biogenic (e.g. LPJ-GUESS) and anthropogenic (e.g. 
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TNO, NILU) inventories, due to the different spatio-temporal resolutions of the input data. For 
each release hourly outputs of mass concentration and mixing ratio fields were produced in 
the mother and nest FLEXPART output grids described above.  

Backward calculations were used for the background together with FLEXPART-CTM 
CO2 output fields.   

The simulated tracer fields were interpolated in order to produce synthetic 
measurements.  

NILU simulated both in situ and remote synthetic measurements for January and July 
2015. Results are illustrated mainly with a focus on summer simulations, when the biogenic 
component is more active and the separation of fossil fuel from background is more 
challenging than in winter due to the signal being overwhelmed by the other components. Oslo 
(60ºN) displays strong seasonal contrasts. 

 

5.2.2.1 CO2 fields and synthetic in-situ observations 

The CO2 synthetic measurements include, in addition to the background, biogenic 
fluxes, biofuel and fossil fuels.  

CO2
tot=CO2

bkg +CO2
bio

 +CO2
ff+CO2

bf
 

Anthropogenic emissions from the NILU inventory from fossil and biofuel are 
available as annual means, therefore when included the temporal variations are daily/weekly 
cycles around the mean. The same applies to the outer domain (mid resolution) of TNO D4.2 
emissions used here. In the case of biogenic fluxes (LPJ-GUESS) an adequate 
representation of the time variation is necessary in order to represent well the daily cycle in 
the mixing ratio. Biogenic emission time resolution is 3 hours. Figure 5-1 shows the synthetic 
observations together with its components for the selected period 1-3 July 2015. 
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Figure 5-1: Synthetic CO2 observations and its components for the selected period 1-3 July 
2015 in the Oslo domain. 

 

5.2.2.2 CO fields and synthetic in-situ observations 

 

For CO only fuel combustion and a constant background are considered. Biogenic emissions 
and biomass burning are included only as a perturbation to the background for sensitivity tests. 

COtot=CObkg +CObio
 +COff 

Figure 5-2 shows the synthetic observations together with its components for the 
selected period 1-3 July 2015. 
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Figure 5-2: Synthetic CO observations and its components for the selected period 1-3 July 2015 
in the Oslo domain.    

 

5.2.2.3 14CO2 fields and synthetic in-situ observations 

 

The atmospheric budget of 14CO2 was modelled following Levin et al. (2003) and Bozhinova 
et al. (2014). For the mixing ratios: 

CO2
obs = CO2

bkg + CO2
ff +CO2

bio + CO2
bf  

        and for the isotopic ratios (Δx indicates the Δ14CO2 signature of CO2 of a particular origin): 

ΔobsCO2
obs =  Δbkg (CO2

bkg + CO2
bio + CO2

bf) + 0×CO2
ff + Δnuc 14CO2

nuc  

 where the last term corresponds to the nuclear plant emissions. 

This yielded an influence in Southern Norway of the order of ~10-12 ppmv in agreement with 
Bozhinova et al., (2014). The Δ14C values simulated in Oslo during e.g. winter 2015 ranged 
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between 8 and 47 per mil. 

 

Figure 5-3: Synthetic Δ14CO2 observations (in permil) and its components for the selected 
period 1-3 July 2015 in the Oslo domain.   

5.2.2.4 APO fields and synthetic in-situ observations 

The definition of APO used was (with APO and δO2 in per meg, CO2 in ppmv and 0.2095 the 
conversion factor): 

APO = δO2 + (-1.1/0.2095) * (350 - CO2) 

APO was simulated based on O2 consumption by combustion provided by TNO and biogenic 
CO2 fluxes form LPJ. The representation of APO is schematic and chiefly for its use in 
sensitivity analysis. In particular the influence of oceanic fluxes is limited to perturbations on 
the background state. However, we focus on short time scales in limited domains around an 
urban area where the main short-range influence comes from fossil CO2.     

The main processes considered affecting the oxygen balance are combustion and 
photosynthesis/respiration (O2apo represents the O2 consumed and O2

bio
 = - 1.1 CO2bio from 

LPJ fields)  

O2
apo=O2

bf+O2
ff+O2

bio
  

The (synthetic) reference values for O2
ref

 and N2
ref

 were 209460 and 780840 ppmv respectively.  

Therefore for a location loc (e.g. background or sample) at x loc: 

O2
loc = O2

ref  - O2
apo(xloc) 

N2loc=N2
ref

  

δO2
loc= ((O2

loc/N2
loc)/O2

ref/N2
ref -1 )*106  

CO2
loc=CO2

tot
  (i.e total CO2 using TNO fuel emissions consistent with the O2 consumption) 
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APOloc= δO2
loc

 + (-1.1/0.2095) * (350 - CO2
loc) 

 

Figure 5-4: Synthetic APO simulations. 

5.3  Separating background from fossil fuel CO2 using additional tracers 

 In order to generate arbitrary time series of synthetic measurements of additional 
tracers within the domain, first 4D fields of the four artificial tracers described above 
were generated with the model output described in section 5.2. Each simulated time 
series of additional tracers was used to separate CO2

ff from the total CO2 
measurements interpolated from the total three dimensional CO2 concentration field 
described above. Figure 5-5 shows synthetic measurements of CO2  and additional 
tracers during a 1st -3rd July 2015.  

The proxy CO2
ff values were calculated from CO, 14CO2 and APO using the following 

formulas:  

 

CO2
ff

_CO  = (COmeas- CObkg)/RCO 

CO2
ff

_14CO2  = CO2
meas (1 - 14CO2

meas/14CO2
bkg) 

CO2
ff

_APO  = (APOmeas- APObkg)/RAPO 

 

Where ‘meas’ corresponds to the synthetic measurements, ‘bkg’ to the background 
and R is a proportionality constant. The values of the proportionality constants were 
RCO~20 (notice the range 7.9 - 14.5 ppb ppm-1  for Paris after Lopez et al. (2013)) and 
RAPO~0.23 ppmbv permeg-1 (range 0.2 to 0.5 with a conversion factor 0.2095 between 
permeg and ppmv). The corresponding time series of estimated CO2

ff proxies for 
central Oslo during the period selected for analysis are shown in Figure 5-6. The 
resulting estimated CO2

ff time series at hypothetical station locations were used to 
constrain short term CO2

ff fluxes via inverse modelling. 
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Figure 5-5: Synthetic measurements of CO2, CO, 14C and APO used to create proxy CO2
ff 

pseudo observations 

 

Figure 5-6: Pseudo observations of CO2
ff estimated form additional tracers (CO2, CO and 14C) 

 

5.4 Fossil fuel CO2 constraints from local area inversions 

 

In order to assess how in-situ measurements of additional species contribute in constraining 
CO2

ff fluxes in an idealised scenario we performed local area inverse calculations. The 
constraints are based on estimates of COff from pseudo observations of additional tracers.  
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5.4.1 SRR sensitivity calculations  

SRRs were calculated using FLEXPART with a similar setting as for the tracer simulations but 
releasing unit emissions and processing separately the 4D fields resulting from each individual 
source. For each release hourly outputs of mass concentration and mixing ratio fields were 
produced in the mother and nest FLEXPART output grids described above resulting in four 
5D fields for each simulation.  

The source relation relationship was calculated from FLEXPART forward trajectories. This 
allowed for increased flexibility in the definition of the synthetic network of stations at the local 
level. A subset of the nested grid was defined with a resolution of 0.3o and a synthetic 
measurement station was considered in each grid point. A time series for each additional 
species and proxy CO2

ff are available at each point.  

5.4.2 Inverse flux estimates  

A series of local scale inverse problems were constructed using these time series and the 
TNO emissions grid. The inverse problems configurations follow D4.3. The inversion settings 
follow those described in Pisso et al. (2019a). The observation error covariance was diagonal 
with a 1 ppb absolute error. The flux error covariance has a relative error of 100 % with non-
diagonal terms with exponentially decaying spatial correlations with a scale of 0.1º. The prior 
fluxes were constructed from the inventories by adding a random noise and a 10% bias.  

5.4.3 Pseudo-network optimisation maximising uncertainty reduction 

For each one of the 200 points on the grid, a one-station inverse calculation was run. The 
results and derived diagnostics such as the uncertainty reduction and the relative difference 
to the true fluxes were recorded. Using the uncertainty reduction as metric, the points with 
maximum uncertainty reduction follow the transport patterns and are located downwind from 
the densest urban areas. Starting from the optimal location, a subsequent exploration of the 
synthetic station list was performed in order to choose the optimal multi-point configuration. 
The process was iterated in and Incremental Optimisation (Patra and Maksyutov, 2003) until 
choosing five synthetic stations. A question arising in placing stations around a city is whether 
the sites should be in the centre or in the periphery. The correlation of the locations of the 
stations with the magnitude of the flux in the corresponding location, as the use of the 
uncertainty reduction as a metric does not favour the choice of locations in the city centre but 
rather around, in a peripheral ring. The uncertainty reduction is a robust metric that does not 
use the distribution of the prior fluxes but only the transport/observation operator and the error 
covariances (fluxes and observations). 
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Figure 5-7: Histograms of all locations of sampling locations defined for July 2015. Every day of 
July an Incremental Optimisation process is executed and 5 pseudo stations are obtained using 
the maximisation of uncertainty reduction as the metric.   

 

5.4.4 Optimisation using alternative metrics   

 

There are alternative metrics to uncertainty reduction that use information explicitly about the 
location of the prior fluxes. In the case of OSSEs where the true fluxes are known, the 
normalised distance to the nature run can be used as penalty function. Here, the Incremental 
Optimisation procedure described above was executed using CO2

ff proxies derived from the 
pseudo observations of CO, 14C and APO. 

In this case in contrast with the previous one, there is a significant correlation between the 
relative difference with respect to the true fluxes and the fluxes themselves. This is the case 
using the CO2

ff proxy from CO, 14C and APO. In contrast with the case of uncertainty reduction, 
the use of the nature run is strongly dependent on the prior and biased towards it. Therefore, 
in practice it can only be used where the real location of the source is known with a high 
confidence. Uncertainty reduction on the other hand is suitable in general, also when there is 
little knowledge about the true fluxes. 
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Figure 5-8: Histograms of all locations of sampling locations defined for July 2015. Normalised 
difference with nature run was used as metric with CO2, CO, 14C and APO used to create proxy 
CO2

ff pseudo observations 

 

Table 5-2: Spatial correlation for the histograms of 5 optimal locations per day in July 2015 and 
nature run fluxes  

Metric correlation 
coefficient 

p value confidence interval 

UR -0.27 <10-5  [ -0.40  -0.14 ] 

CO proxy   0.74 <10-5  [  0.67   0.80 ] 
14CO2 proxy  0.74 <10-5  [  0.68   0.80 ] 

APO proxy  0.62 <10-5  [  0.53   0.70 ] 
 

5.5 Recommendations 

While assessing anthropogenic emission fluxes of CO2, measurements in or close to the city 
centre provide a stronger constraint than rural sites.  

We tested the hypothesis that stations located within the highest emitting grid cells provide 
the most information. We found that when using a limited amount of measuring points, the 
accuracy of the retrieved fluxes has a weak correlation with the measurements located in the 
highest emitting cells. The alternative arrangement consists in measurements up and 
downwind from the highest emitting grid cells, such as in a ring distribution around the city 
centre, in agreement with previous examples described in the literature. 

In the configuration used here, the weak correlation with the city centre holds for calculations 
with the three different proxy CO2

ff (CO, 14C, and APO) tracers. However, in the idealised 
setting used here, there is a sufficiently good knowledge of the background magnitude of the 
additional tracers and only perturbations thereof are studied. In a more realistic setting great 
care should be taken in properly assessing the background of all three species.  

A similar statement applies to the factors used to convert each additional tracer and CO2
ff as 

these are dependent on season and location and likely to have long term trends.   
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6 Assessment from UEA 

6.1 Background: Covid-19 detection from atmospheric data 

A new study by Pickers et al. (2020) has robustly detected a reduction in ffCO2 in the 
atmosphere associated with the Covid-19 lockdown restrictions. This was achieved using 
continuous (hourly) Atmospheric Potential Oxygen (APO) data from Weybourne Atmospheric 
Observatory, UK, combined with a machine learning algorithm to account for the effects of 
weather and atmospheric transport processes on the atmospheric ffCO2 signal. To our 
knowledge, this is the first study to identify and quantify a Covid-19 ffCO2 signal in atmospheric 
data. The main text and figures of the submitted manuscript are included in the CHE 
deliverable 1.3 report, section 7, as part of the “detection of key/extreme events” part of work 
package 1. 

6.2 How was this achieved? 

The detection of a Covid-19 ffCO2 signal in the atmosphere was only made possible by the 
use of a continuous (i.e. high frequency, such as hourly) ffCO2 tracer, used in conjunction with 
machine learning techniques. It would not have been possible to detect such a signal using a 
discrete tracer, such as 14CO2, owing to the requirement for high frequency data with which to 
train the machine learning model. Using continuous atmospheric CO2 data, instead of APO 
data, combined with the machine learning was also unsuccessful, owing to large signals in the 
atmospheric CO2 data from the terrestrial biosphere. In addition, it was not possible to detect 
the Covid-19 ffCO2 signal using the APO data alone (i.e. without the use of machine learning), 
owing to the significant influence of atmospheric transport processes on the APO data. 

6.3 Implications for surface network design 

For any future design of Europe’s surface GHG network, it is important to consider the value 
added by continuous ffCO2 capability. While any network design should rightly be based on 
well-established methods, such as discrete 14CO2 sampling, recent developments in new 
continuous ffCO2 tracers may offer their own benefits. In particular, the advent of machine 
learning methods may lead to changes in the traditional landscape of the top-down detection 
and attribution problem in coming decades. 

Continuous tracers can, by nature, provide higher temporal resolution information (e.g. sub-
annually, sub-monthly), which is important for the timely detection of top-down emissions 
estimates. For example, the effects of Covid-19 lockdowns may yet become visible in discrete 
14CO2 datasets in a few years’ time, though it is unlikely that the signal will be visible on the 
sub-annual timescale (an important consideration for Covid-19, which is characterised by 
months of significant emissions reductions during national/local lockdowns interspersed by 
months of relative normality). Thus, it may be that the 14CO2 signal, once detected, will be too 
late to have significant bearing on environmental policies arising from lessons learnt during 
the Covid-19 crisis. 

Finally, in any network where the availability of atmospheric data is a key constraint, 
continuous ffCO2 tracers can help improve the robustness of data availability, since they are 
generally less susceptible to the potential pitfalls experienced by discrete sampling strategies, 
which are: sampling when ffCO2 signals are too low; sampling when the wind dynamics are 
sub-optimal; and sampling when air masses are unduly affected by local emissions or 
undesirable contaminants (such as nuclear powerplant emissions, in the case of 14CO2).   
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7 Conclusion 

This report marks the formal end of CHE WP4. It was designed as an ambitious collective 
work that mutualized much of the preparatory effort for the high-resolution forward and inverse 
numerical simulations, as highlighted with D4.3, “Attribution Problem Configurations”. The 
challenges of carrying out the high-resolution simulations were also taken with success 
despite various technical difficulties. The four modelling groups (CEA/LSCE, EMPA, MPG and 
NILU), helped by TNO and UEA, have gathered a large amount of results about the 
contribution of fossil fuel emissions in CO2, CO, 14CO2, CO and APO ground-based (all tracers) 
and satellite (in the case of CO2 only) observations and the possibility to infer the former form 
the latter. The time-scale of the project has not allowed discussing the results much within the 
group after the simulations were made: we therefore forward the reader to the individual 
conclusion sections above (2.4 for CEA/LSCE, 3.3 for EMPA, 4.4 for MPG, 5.5 for NILU and 
6.3 for the experimental results of UEA) that best represent the understanding of the results 
at this stage. They will all make their way towards the peer-reviewed literature with additional 
analyses.  

At this stage, it remains interesting to note the converging conclusion about the information 
content of all tracers, including the CO2 column averages observed from space. All works 
highlight the complex link between the CO2, 14CO2, CO and APO atmospheric tracers on the 
one hand, and the CO2 fossil fuel emissions on the other hand. This complexity comes with 
modelling uncertainties that remain too large for a CO2 emissions Monitoring and Verification 
Support capacity to rely on a single tracer. The observation system has therefore to expand 
into a robust system of systems where redundancy among information sources compensates 
for modelling errors, and where complementarity among tracers compensates for the 
temporary blindness of some data sources during longer or shorter periods of time. Last, the 
various modelling studies also note the importance of ground-based tracer measurements in 
the close vicinity of cities. 
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